Skip to main content
Log in

A QSPR treatment for the thermal stabilities of second-order NLO chromophore molecules

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantitative structure–property relationships were studied between descriptors representing the molecular structures and thermal decomposition temperatures (T d) for a diverse set of 90 second-order nonlinear optical (NLO) chromophores. A seven-parameter model was developed for the prediction of molar thermal decomposition function Y d (T d M, where M represents the molar weight) with R 2 =0.9642 and SEE=14.01 by multilinear regression analysis. The mean relative error for the prediction of T d was 4.46%. The stability of the proposed model was validated using leave-one-out cross-validation. All descriptors involved in the model were derived solely from the chemical structures of the NLO chromophores.

Plot of predicted vs. experimental values of Y d obtained with 7 descriptors involved (R=0.982)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

QSPR:

Quantitative structure–property relationships

NLO:

Nonlinear optical

SEE:

Standard error of estimation

LOO:

Leave-one-out

MLRA:

Multilinear regression analysis

References

  1. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  2. Shi S (1994) Comtemp Phys 35:21–36

    CAS  Google Scholar 

  3. Zyss J (1994) Molecular nonlinear optics: materials, physics and devices. Academic, Boston

    Google Scholar 

  4. Burland DM, Miller RD, Reiser O, Twieg RJ, Walsh CA (1992) J Appl Phys 71:410–417

    Article  CAS  Google Scholar 

  5. Burland DM, Miller RD, Walsh CA (1994) Chem Rev 94:31–75

    Article  CAS  Google Scholar 

  6. Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Fetterman H, Shi Y, Mustacich RV, Jen AK-Y, Shea KJ (1995) Chem Mater 7:1060–1081

    Article  CAS  Google Scholar 

  7. Pan Q, Fang C, Li F, Zhang Z, Qin Z, Wu X, Gu Q, Yu J (2002) Mater Res Bull 37:523–531

    Article  CAS  Google Scholar 

  8. Marder SR, Beratan DN, Cheng LT (1991) Science 252:103–106

    Article  CAS  Google Scholar 

  9. Moylan CR, Twieg RJ, Lee VY, Swanson SA, Betterton KM, Miller RD (1993) J Am Chem Soc 115:12599–12600

    Article  CAS  Google Scholar 

  10. Moylan CR, Ermer S, Lovejoy SM, McComb I-H, Leung DS, Wortmann Rd, Krdmer P, Twieg RJ (1996) J Am Chem Soc 118:12950–12955

    Article  CAS  Google Scholar 

  11. Kim O-K, Fort A, Barzoukas M, Blanchard-Descec M, Lehna J-M (1999) J Mater Chem 9:2227–2232

    Article  CAS  Google Scholar 

  12. Cho BR, Park SB, Seung Jae Lee, Son KH, Lee SH, Lee M-J, Yoo J, Lee YK, Lee GJ, Kang TI, Cho M, Jeon S-J (2001) J Am Chem Soc 123:6421–6422

    Article  PubMed  CAS  Google Scholar 

  13. Oberg K, Berglund A, Edlund U, Eliasson B (2001) J Chem Inf Comput Sci 41:811–814

    Article  PubMed  CAS  Google Scholar 

  14. Zeng XD, Xu X, Wang BF, Wang BC (2004) Chin Chem Lett 15:753–756

    CAS  Google Scholar 

  15. Bicerano J (1996) Prediction of polymer properties. Marcel Dekker, New York

    Google Scholar 

  16. http://www.disat.unimib.it/chm/Dragon.htm

  17. Jurs PC (1996) Computer software applications in chemistry. Wiley, New York

    Google Scholar 

  18. Rao VP, Jen AKY, Wong KY, Drost KJ (1993) J Chem Soc Chem Commun 14:1118–1120

    Article  Google Scholar 

  19. Gilmour S, Marder SR, Perry JW, Cheng LT (1994) Adv Mater 6:494–496

    Article  CAS  Google Scholar 

  20. Shu C-F, Wang Y-K (1998) J Mater Chem 8:833–835

    Article  CAS  Google Scholar 

  21. Matsui M, Marui Y, Kushida M, Funabiki K, Muramatsu H, Shibata K, Hirota K, Hosoda M, Tai K (1998) Dyes Pigm 38:57–64

    Article  CAS  Google Scholar 

  22. Mao SSH, Ra Y, Guo L, Zhang C, Dalton LR, Chen A, Garner S, Steier WH (1998) Chem Mater 10:146–155

    Article  CAS  Google Scholar 

  23. Wang P, Zhu P, Wu W, Kang H, Ye C (1999) Phys Chem Chem Phys 1:3519–3525

    Article  CAS  Google Scholar 

  24. Davey MH, Lee VY, Wu L-M, Moylan CR, Volksen W, Knoesen A, Miller RD, Marks TJ (2000) Chem Mater 12:1679–1693

    Article  CAS  Google Scholar 

  25. Zhao L, Wang S, Chang J (2000) Chin J Org Chem 20:750–753

    CAS  Google Scholar 

  26. Ledouxa I, Zyssa J, Barni E, Barolo C, Diulgheroff N, Quagliotto P, Viscardi G (2000) Synth Met 115:213–217

    Article  Google Scholar 

  27. Katti KV, Raghuraman K, Pillarsetty N, Karra SR, Gulotty RJ, Chartier MA, Langhoff CA (2002) Chem Mater 14:2436–2438

    Article  CAS  Google Scholar 

  28. Pan Q, Fang C, Zhang Z, Qin Z, Li F, Gu Q, Xu X, Yu J (2003) Opt Mater 22:45–49

    Article  CAS  Google Scholar 

  29. Spraul BK, Suresh S, Sassa T, Herranz MA, Echegoyen L, Wada T, Perahiaa D, Smith DW Jr (2004) Tetrahedron Lett 45:3253–3256

    Article  CAS  Google Scholar 

  30. http://www.cambridgesoft.com/

  31. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Google Scholar 

  32. http://www.spss.com/

  33. Jobson JD (1991) Applied multivariate data analysis, regression and experimental design, vol 1. Springer, Berlin Heidelberg New York

  34. Balaban AT, Ciubotariu D, Medeleanu M (1991) J Chem Inf Comput Sci 31:517–523

    Article  CAS  Google Scholar 

  35. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. RSP-Wiley, Chichester

    Google Scholar 

  36. Estrada E (1995) J Chem Inf Comput Sci 35:701–707

    Article  CAS  Google Scholar 

  37. Estrada E (1995) J Chem Inf Comput Sci 35:31–33

    Article  CAS  Google Scholar 

  38. Estrada E (1996) J Chem Inf Comput Sci 36:844–849

    Article  CAS  Google Scholar 

  39. Estrada E, Ramirez A (1996) J Chem Inf Comput Sci 36:837–843

    Article  CAS  Google Scholar 

  40. Estrada E (1997) J Chem Inf Comput Sci 37:320–328

    Article  CAS  Google Scholar 

  41. Gilvez J, Garcia R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520–525

    Article  Google Scholar 

  42. Kim YS, Kim JH, Kim JS, No KT (2002) J Chem Inf Comput Sci 42:75–81

    Article  PubMed  CAS  Google Scholar 

  43. Yin S, Shuai Z, Wang Y (2003) J Chem Inf Comput Sci 43:970–977

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (50025309 and 90201016). Special thanks were given to Prof. Todeschini and other members in Milano Chemometerics and the QSAR Group for providing the Dragon package for use in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Guo, B., Chen, B. et al. A QSPR treatment for the thermal stabilities of second-order NLO chromophore molecules. J Mol Model 12, 65–75 (2005). https://doi.org/10.1007/s00894-005-0006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0006-x

Keywords

Navigation