Skip to main content

Advertisement

Log in

Retinoic acid metabolism in cancer: potential feasibility of retinoic acid metabolism blocking therapy

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Retinoic acid (RA) is an active metabolite of vitamin A, which is an essential signaling molecule involved in cell fate decisions, such as differentiation, proliferation, and apoptosis, in a wide variety of cell types. Accumulated data have demonstrated that expression of RA-metabolizing enzymes, CYP26A1, B1, and C1 (cytochrome P450, family 26A1, B1, and C1, respectively), protects cells and tissues from exposure to RA through restriction of RA access to transcriptional machinery by converting RA to rapidly excreted derivatives. CYP26 enzymes play similar but separate roles in limiting the consequences of fluctuations in nutritional vitamin A. Recently, we found that RA depletion caused by expression of CYP26A1 promotes malignant behaviors of tumor cells derived from various tissues, implicating CYP26A1 as a candidate oncogene. We also showed that the expression levels of CYP26 enzymes are elevated in various types of cancer. We have provided evidence for oncogenic and cell survival properties of CYP26 enzymes, indicating that these molecules are possible therapeutic targets for CYP26-expressing malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data including in this manuscript is available upon request.

Abbreviations

RA:

Retinoic acid

RAR:

RA nuclear receptors

RXR:

Retinoid X receptors

atRA:

All-trans RA

VAD:

Vitamin A deficiency

UV:

Ultraviolet irradiation

SCC:

Squamous cell carcinoma

LSIL:

Low-grade squamous intraepithelial lesion

HSIL:

High-grade squamous intraepithelial lesion

HPV:

Human papilloma virus

TNM:

Tumor–node–metastasis

HNC:

Head and neck cancer

APL:

Acute promyelocytic leukemia

HCC:

Hepatocellular carcinoma

NAFLD:

Non-alcoholic fatty liver disease

HSC:

Hepatic stellate cell

References

  1. Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144

    CAS  PubMed  Google Scholar 

  2. Means A, Gudas LJ (1995) The roles of retinoids in vertebrate development. Annu Rev Biochem 64:210–233

    Google Scholar 

  3. Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450

    CAS  PubMed  Google Scholar 

  4. Petkovich M (1992) Regulation of gene expression by vitamin A: the role of nuclear retinoic acid receptors. Annu Rev Nutr 12:443–471

    CAS  PubMed  Google Scholar 

  5. Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841–850

    CAS  PubMed  Google Scholar 

  6. Lotan R (1996) Retinoids in cancer chemoprevention. FASEB J 10:1031–1039

    CAS  PubMed  Google Scholar 

  7. Osanai M (2017) Cellular retinoic acid bioavailability in various pathologies and its therapeutic implication. Pathol Int 67:281–289

    CAS  PubMed  Google Scholar 

  8. de Thé H (1996) Altered retinoic acid receptor. FASEB J 10:955–960

    PubMed  Google Scholar 

  9. Wolbach SB, Howe PR (1925) Tissue changes following deprivation of fat-soluble A vitamin. J Exp Med 42:753–777

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Osanai M, Petkovich M (2005) Expression of the retinoic acid metabolizing enzyme, CYP26A1 limits programmed cell death. Mol Pharmacol 67:1808–1817

    CAS  PubMed  Google Scholar 

  11. Osanai M, Sawada N, Lee GH (2010) Oncogenic and cell survival properties of the retinoic acid metabolizing enzyme, CYP26A1. Oncogene 29:1135–1144

    CAS  PubMed  Google Scholar 

  12. White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem 272:18538–18541

    CAS  PubMed  Google Scholar 

  13. Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Taimi M, Helvig C, Wisniewski J, Ramshaw H, White J, Amad M, Korczak B, Petkovich M (2003) A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid. J Biol Chem 279:77–85

    PubMed  Google Scholar 

  15. Van heusden J, Wouters W, Ramaekers FC, Krekels MD, Dillen L, Borgers M, Smets G, (1998) The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells. Br J Cancer 77:1229–1235

    PubMed  Google Scholar 

  16. Sonneveld E, van den Brink CE, van der Leede BM, Schulkes RK, Petkovich M, van der Burg B, van der Saag PT (1998) Human retinoic acid (RA) 4-hydroxylase (CYP26) is highly specific for all-trans-RA and can be induced through RA receptors in human breast and colon carcinoma cells. Cell Growth Diff 9:629–637

    CAS  PubMed  Google Scholar 

  17. Laassen I, Brakenhoff RH, Smeets SJ, Snow GB, Braakhuis BJ (2001) Metabolism and growth inhibition of four retinoids in head and neck squamous normal and malignant cells. Br J Cancer 85:630–635

    Google Scholar 

  18. Ozpolat B, Mehta K, Tari AM, Tari AM, Lopez-Berestein G (2002) All-trans-retinoic acid-induced expression and regulation of retinoic acid 4-hydroxylase (CYP26) in human promyelocytic leukemia. Am J Hematol 70:39–47

    CAS  PubMed  Google Scholar 

  19. Shelton DN, Sandoval IT, Eisinger A, Chidester S, Ratnayake A, Ireland CM, Jones DA (2006) Up-regulation of CYP26A1 in adenomatous polyposis coli-deficient vertebrates via a WNT-dependent mechanism: implications for intestinal cell differentiation and colon tumor development. Cancer Res 66:7571–7577

    CAS  PubMed  Google Scholar 

  20. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    CAS  PubMed  Google Scholar 

  21. Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30

    CAS  PubMed  Google Scholar 

  22. French AL, Kirstein LM, Massad LS, Semba RD, Minkoff H, Landesman S, Palefsky J, Young M, Anastos K, Cohen MH (2000) Association of vitamin A deficiency with cervical squamous intraepithelial lesions in human immunodeficiency virus-infected women. J Infect Dis 182:1084–1089

    CAS  PubMed  Google Scholar 

  23. Wang Z, Boudjelal M, Kang S, Voorhees JJ, Fisher GJ (1999) Ultraviolet irradiation of human skin causes functional vitamin A deficiency, preventable by all-trans retinoic acid pre-treatment. Nat Med 5:418–422

    CAS  PubMed  Google Scholar 

  24. Osanai M, Lee GH (2015) The retinoic acid-metabolizing enzyme CYP26A1 upregulates fascin and promotes the malignant behavior of breast carcinoma cells. Oncol Rep 34:850–858

    CAS  PubMed  Google Scholar 

  25. Grothey A, Hashizume R, Ji H, Tubb BE, Patrick CW Jr, Yu D, Mooney EE, McCrea PD (2000) C-erbB-2/HER-2 upregulates fascin, an actin-bundling protein associated with cell motility, in human breast cancer cell lines. Oncogene 19:4864–4875

    CAS  PubMed  Google Scholar 

  26. Grothey A, Hashizume R, Sahin AA, McCrea PD (2000) Fascin, an actin-bundling protein associated with cell motility, is upregulated in hormone receptor negative breast cancer. Br J Cancer 83:870–873

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Osanai M, Lee GH (2011) Enhanced expression of retinoic acid metabolizing enzyme CYP26A1 in sunlight-damaged human skin. Med Mol Morphol 44:200–206

    CAS  PubMed  Google Scholar 

  28. Marks R (1995) An overview of skin cancers: incidence and causation. Cancer 75:607–612

    CAS  PubMed  Google Scholar 

  29. Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin aging and retinoid antagonism. Nature 379:335–339

    CAS  PubMed  Google Scholar 

  30. Osanai M, Lee GH (2014) Increased expression of the retinoic acid-metabolizing enzyme CYP26A1 during the progression of cervical squamous neoplasia and head and neck cancer. BMC Res Notes 7:697

    PubMed Central  PubMed  Google Scholar 

  31. Straight SW, Hinkle PM, Jewers RJ, McCance DJ (1993) The E5 oncoprotein of human papilloma virus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67:4521–4532

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhang X, Dai B, Zhang B, Wang Z (2012) Vitamin A and risk of cervical cancer: a meta-analysis. Gynecol Oncol 124:366–373

    CAS  PubMed  Google Scholar 

  33. Meyskens FL Jr, Manetta A (1995) Prevention of cervical intraepithelial neoplasia and cervical cancer. Am J Clin Nutr 62:1417S-1419S

    CAS  PubMed  Google Scholar 

  34. La Vecchia C, Franceschi S, DecarlI A, Gentile A, Fasoli M, Pampallona S, Tognoni G (1984) Dietary vitamin A and the risk of invasive cervical cancer. Int J Cancer 34:319–322

    PubMed  Google Scholar 

  35. Meyskens FL Jr, Surwit E, Moon TE, Childers JM, Davis JR, Dorr RT, Johnson CS, Alberts DS (1994) Enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J Natl Cancer Inst 86:539–543

    PubMed  Google Scholar 

  36. Forastiere A, Koch W, Trotti A, Sidransky D (2001) Head and neck cancer. N Engl J Med 345:1890–1900

    CAS  PubMed  Google Scholar 

  37. Williams HK (2000) Molecular pathogenesis of oral squamous cell carcinoma. Mod Pathol 53:165–172

    CAS  Google Scholar 

  38. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH (2003) A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730

    CAS  PubMed  Google Scholar 

  39. Berlin Grace VM, Niranjali Devaraj S, Radhakrishnan Pillai M, Devaraj H (2006) HPV-induced carcinogenesis of the uterine cervix is associated with reduced serum ATRA level. Gynecol Oncol 103:113–119

    CAS  PubMed  Google Scholar 

  40. Murr G, Kostelić F, Donkić-Pavicić I, Grdinić B, Subić N (1988) Comparison of the vitamin A blood serum level in patients with head-neck cancer and healthy persons. HNO 36:359–362

    CAS  PubMed  Google Scholar 

  41. Osanai M, Lee GH (2016) Elevated expression of the retinoic acid-metabolizing enzyme CYP26C1 in primary breast carcinomas. Med Mol Morphol 49:22–27

    CAS  PubMed  Google Scholar 

  42. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    CAS  PubMed  Google Scholar 

  43. Melis M, Tang XH, Trasino SE, Gudas LJ (2022) Retinoids in the pathogenesis and treatment of liver diseases. Nutrients 14:1456

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN (2017) Disturbed vitamin A metabolism in non-alcoholic fatty liver disease. Nutrients 10:29

    PubMed Central  PubMed  Google Scholar 

  45. Trasino SE, Tang XH, Jessurun J, Gudas LJ (2015) Obesity leads to tissue, but not serum vitamin A deficiency. Sci Rep 5:15893

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors helped draft the manuscript, and read and approved the final manuscript.

Corresponding author

Correspondence to Makoto Osanai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osanai, M., Takasawa, A., Takasawa, K. et al. Retinoic acid metabolism in cancer: potential feasibility of retinoic acid metabolism blocking therapy. Med Mol Morphol 56, 1–10 (2023). https://doi.org/10.1007/s00795-022-00345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-022-00345-6

Keywords

Navigation