Skip to main content

Advertisement

Log in

Mammary cancer gene therapy targeting lymphangiogenesis: VEGF-C siRNA and soluble VEGF receptor-2, a splicing variant

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Metastasis contributes significantly to cancer mortality, and the most common pathway of initial dissemination is via the afferent ducts of the lymphatics. Overexpression of vascular endothelial growth factor (VEGF)-C has been associated with lymphangiogenesis and lymph node metastasis in a multitude of human neoplasms, including breast cancers. We recently reported that both VEGF-C siRNA and endogenous soluble vascular endothelial growth factor receptor-2 (esVEGFR-2, a new splicing variant) inhibit VEGF-C function and metastasis in a mouse model of metastatic mammary cancer. Here we briefly review our previous experimental work, specifically targeting tumor lymphangiogenesis, in which metastatic mouse mammary cancers received direct intratumoral injections of either expression vectors VEGF-C siRNA or esVEGFR-2, or the empty plasmid vector, once a week for 6 or 8 weeks, followed by in vivo gene electrotransfer of the injected tumors. Throughout our study, both tumor lymphangiogenesis and the multiplicity of lymph node metastasis were significantly inhibited, with an overall reduction in tumor growth, by both VEGF-C siRNA and esVEGFR-2; further, a significant reduction in the number of dilated lymphatic vessels containing intraluminal cancer cells was observed with both treatments. Thus, therapeutic strategies targeting lymphangiogenesis may have great clinical significance for the treatment of metastatic human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guarneri V, Conte PF (2004) The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging 31(suppl 1):S149–S161

    Article  PubMed  Google Scholar 

  2. Kuroishi T, Tominaga S (2001) Epidemiology of breast cancer. Jpn J Cancer Chemother 28:168–173

    CAS  Google Scholar 

  3. Agarwal G, Pradeep PV, Aggarwal V, Yip CH, Cheung PS (2007) Spectrum of breast cancer in Asian women. World J Surg 31: 1031–1040

    Article  PubMed  Google Scholar 

  4. Brinton LA, Sherman ME, Carreon JD, Anderson WF (2008) Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst 100:1643–1648

    Article  PubMed  Google Scholar 

  5. Bouchardy C, Fioretta G, Verkooijen HM, Vlastos G, Schaefer P, Delaloye JF, Neyroud-Caspar I, Balmer Majno S, Wespi Y, Forni M, Chappuis P, Sappino AP, Rapiti E (2007) Recent increase of breast cancer incidence among women under the age of forty. Br J Cancer 96:1743–1746

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352

    Article  CAS  PubMed  Google Scholar 

  7. Joory KD, Levick JR, Mortimer PS, Bates DO (2006) Vascular endothelial growth factor-C (VEGF-C) expression in normal human tissues. Lymphat Res Biol 4:73–82

    Article  CAS  PubMed  Google Scholar 

  8. Salven P, Lymboussaki A, Heikkila P, Jaaskela-Saari H, Enholm B, Aase K, von Euler G, Eriksson U, Alitalo K, Joensuu H (1998) Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 153:103–108

    Article  CAS  PubMed  Google Scholar 

  9. Mylona E, Alexandrou P, Mpakali A, Giannopoulou I, Liapis G, Markaki S, Keramopoulos A, Nakopoulou L (2007) Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and -D and VEGF receptor 3 in invasive breast carcinoma. Eur J Surg Oncol 33:294–300

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura Y, Yasuoka H, Tsujimoto M, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91:125–132

    Article  CAS  PubMed  Google Scholar 

  11. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  CAS  PubMed  Google Scholar 

  12. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M, Alitalo K (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61:1786–1790

    CAS  PubMed  Google Scholar 

  13. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:819–825

    Article  CAS  PubMed  Google Scholar 

  14. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    Article  CAS  PubMed  Google Scholar 

  15. Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Peterson ML, Brekken RA, Hirashima M, Capoor S, Usui T, Ambati BK, Ambati J (2009) Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15:1023–1030

    Article  CAS  PubMed  Google Scholar 

  16. Shibata MA, Morimoto J, Shibata E, Otsuki Y (2008) Combination therapy with short interfering RNA vectors against VEGF-C and VEGF-A suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model. Cancer Gene Ther 15:776–786

    Article  CAS  PubMed  Google Scholar 

  17. Shibata MA, Ambati J, Shibata E, Albuquerque RJ, Morimoto J, Ito Y, Otsuki Y (2010) The endogenous soluble VEGF receptor-2 isoform suppresses lymph node metastasis in a mouse immunocompetent mammary cancer model. BMC Med 8:69

    Article  PubMed  Google Scholar 

  18. Morimoto J, Imai S, Haga S, Iwai Y, Iwai M, Hiroishi S, Miyashita N, Moriwaki K, Hosick HL (1991) New murine mammary tumor cell lines. In Vitro Cell Dev Biol 27A:349–351

    Article  CAS  PubMed  Google Scholar 

  19. Shibata MA, Morimoto J, Otsuki Y (2002) Suppression of murine mammary carcinoma growth and metastasis by HSVtk/GCV gene therapy using in vivo electroporation. Cancer Gene Ther 9:16–27

    Article  CAS  PubMed  Google Scholar 

  20. Shibata MA, Ito Y, Morimoto J, Kusakabe K, Yoshinaka R, Otsuki Y (2006) In vivo electrogene transfer of interleukin-12 inhibits tumor growth and lymph node and lung metastases in mouse mammary carcinomas. J Gene Med 8:335–352

    Article  CAS  PubMed  Google Scholar 

  21. Shibata MA, Akao Y, Shibata E, Nozawa Y, Ito T, Mishima S, Morimoto J, Otsuki Y (2007) Vaticanol C, a novel resveratrol tetramer, reduces lymph node and lung metastases of mouse mammary carcinoma carrying p53 mutation. Cancer Chemother Pharmacol 60:681–691

    Article  CAS  PubMed  Google Scholar 

  22. Shibata MA, Morimoto J, Shibata E, Akamatsu K, Kurose H, Li Z-L, Kusakabe M, Ohmichi M, Otsuki Y (2010) Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer. BMC Cancer 10:566

    Article  PubMed  Google Scholar 

  23. Shibata MA, Iinuma M, Morimoto J, Kurose H, Akamatsu K, Okuno Y, Akao Y, Otsuki Y (2011) a-Manogstin extracted from the pericarp of the mangosteen (Garcinia mangostana Linn.) reduces tumor growth and lymph node metastasis in an immunocompetent xenograft model of metastatic mammary cancer carrying a p53 mutation. BMC Med 9:69

    Article  PubMed  Google Scholar 

  24. Shibata MA, Liu M-L, Knudson MC, Shibata E, Yoshidome K, Bandy T, Korsmeyer SJ, Green JE (1999) Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 18:2692–2701

    Article  CAS  PubMed  Google Scholar 

  25. Gorrin-Rivas MJ, Arii S, Furutani M, Mizumoto M, Mori A, Hanaki K, Maeda M, Furuyama H, Kondo Y, Imamura M (2000) Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 6:1647–1654

    CAS  PubMed  Google Scholar 

  26. Shibata MA, Shibata E, Morimoto J, Eid NAS, Tanaka Y, Watanabe M, Otsuki Y (2009) An immunocompetent murine model of metastatic mammary cancer accessible to bioluminescence imaging. Anticancer Res 29:4389–4396

    PubMed  Google Scholar 

  27. Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157: 55–81

    Article  CAS  PubMed  Google Scholar 

  28. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K (1999) VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 154:1381–1390

    Article  CAS  PubMed  Google Scholar 

  29. Achen MG, Mann GB, Stacker SA (2006) Targeting lymphangiogenesis to prevent tumour metastasis. Br J Cancer 94:1355–1360

    Article  CAS  PubMed  Google Scholar 

  30. Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE, Singh RK (2005) Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 65: 9004–9011

    Article  CAS  PubMed  Google Scholar 

  31. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–3570

    Article  CAS  PubMed  Google Scholar 

  32. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:290–298

    CAS  PubMed  Google Scholar 

  33. Shimizu K, Kubo H, Yamaguchi K, Kawashima K, Ueda Y, Matsuo K, Awane M, Shimahara Y, Takabayashi A, Yamaoka Y, Satoh S (2004) Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci 95:328–333

    Article  CAS  PubMed  Google Scholar 

  34. Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B, Tu GH, Koprivnikar K, VanRoey MJ, He Y, Alitalo K, Jooss K (2005) Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65:6901–6909

    Article  CAS  PubMed  Google Scholar 

  35. Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, Hicklin D, Persaud K, Tonra JR, Witte L, Alitalo K (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67:593–599

    Article  CAS  PubMed  Google Scholar 

  36. Burton JB, Priceman SJ, Sung JL, Brakenhielm E, An DS, Pytowski B, Alitalo K, Wu L (2008) Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 68:7828–7837

    Article  CAS  PubMed  Google Scholar 

  37. Hasebe T, Okada N, Iwasaki M, Akashi-Tanaka S, Hojo T, Shibata T, Sasajima Y, Tsuda H, Kinoshita T (2010) Grading system for lymph vessel tumor emboli: significant outcome predictor for invasive ductal carcinoma of the breast. Hum Pathol 41:706–715

    Article  PubMed  Google Scholar 

  38. Hasebe T, Sasaki S, Imoto S, Ochiai A (2002) Characteristics of tumors in lymph vessels play an important role in the tumor progression of invasive ductal carcinoma of the breast: a prospective study. Mod Pathol 15:904–913

    Article  PubMed  Google Scholar 

  39. Tuomela J, Valta M, Seppanen J, Tarkkonen K, Vaananen HK, Harkonen P (2009) Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors. BMC Cancer 9:362

    Article  PubMed  Google Scholar 

  40. Kodama M, Kitadai Y, Tanaka M, Kuwai T, Tanaka S, Oue N, Yasui W, Chayama K (2008) Vascular endothelial growth factor C stimulates progression of human gastric cancer via both autocrine and paracrine mechanisms. Clin Cancer Res 14:7205–7214

    Article  CAS  PubMed  Google Scholar 

  41. Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24 740 breast cancer cases. Cancer (Phila) 63:181–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masa-Aki Shibata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, MA., Ambati, J., Shibata, E. et al. Mammary cancer gene therapy targeting lymphangiogenesis: VEGF-C siRNA and soluble VEGF receptor-2, a splicing variant. Med Mol Morphol 45, 179–184 (2012). https://doi.org/10.1007/s00795-012-0576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-012-0576-5

Key words

Navigation