Skip to main content
Log in

Immunoreactivities for glutathione S-transferases and glutathione peroxidase in the lateral wall of pigmented and albino guinea pig cochlea

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Dark-skinned people are known to be more tolerant of ototraumatic noise than are light-skinned people, and pigmented animals are more tolerant of ototraumatic noise and aminoglycoside ototoxicity than are albino animals. Such tolerance may be dependent on the local ability of detoxification and antioxidant enzymes, including glutathione S-transferase (GST) and glutathione peroxidase (GSPx). In the present study, we examined the difference in GST/GSPx expression in the lateral wall of the cochlea between pigmented and albino guinea pigs. Eight-week-old male pigmented and albino guinea pigs were killed by transcardiac perfusion with 2% paraformaldehyde. The cochlear ducts were isolated, further fixed with 4% paraformaldehyde, decalcified, and then embedded in paraffin. Sections prepared at 5-μm thickness were incubated with anti-GST-α,-μ,-π, or anti-GSPx antibody, reacted with Alexa Fluorconjugated secondary antibody, and examined under a Carl Zeiss Axioskop 2 plus fluorescence microscope. The cochlea ducts were also subjected to immunoelectron microscopy for GST-π by the postembedment method. The stria vascularis of pigmented guinea pigs was strongly immunoreactive for GST-α,-μ,-π, and GSPx, whereas no or only weak immunoreactivities were seen in the stria vascularis of albino guinea pigs. The spiral ligament showed positive but different immunoreactivities for these enzymes between the strains. Double-stained immunofluorescence micrographs for GST-π and GSPx showed a close resemblance of localization between the two enzymes in both pigmented and albino guinea pigs. At the ultrastructural level, immunoreactivity for GST-π was localized preferentially in the melanin cells of pigmented guinea pigs. These results suggest that correlation between pigmentation and inner ear susceptibility is, at least partially, attributed to the different distribution of GST/GSPx in the stria vascularis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hood JD, Poole JP, Freedman L (1976) The influence of eye colour upon temporary threshold shift. Audiology 15:449–464

    Article  PubMed  CAS  Google Scholar 

  2. Carter NL (1980) Eye colour and susceptibility to noise-induced permanent threshold shift. Audiology 19:86–93

    Article  PubMed  CAS  Google Scholar 

  3. Carter NL, Keen K, Waugh RL, Murray N, Bulteau VG (1981) The relationship of eye colour and smoking to noise-induced permanent threshold shift. Audiology 20:336–346

    Article  PubMed  CAS  Google Scholar 

  4. Barrenäs ML, Lindgren F (1990) The influence of inner ear melanin on susceptibility to TTS in humans. Scand Audiol 19:97–102

    PubMed  Google Scholar 

  5. Conlee JW, Abdul-Baqi KJ, McCandless GA, Creel DJ (1986) Differential susceptibility to noise induced permanent threshold shift between albino and pigmented guinea pigs. Hear Res 23:81–91

    Article  PubMed  CAS  Google Scholar 

  6. Conlee JW, Benett ML, Creel DJ (1995) Differential effects of gentamicin on the distribution of cochlear function in albino and pigmented guinea pigs. Acta Otolaryngol 115:367–374

    Article  PubMed  CAS  Google Scholar 

  7. Bustamante J, Bredeston L, Malanga G., Mordoh J (1993) Role of melanin as a scavenger of active oxygen species. Pigment Cell Res 6:348–353

    Article  PubMed  CAS  Google Scholar 

  8. Tanikawa K, Torimura T (2006) Studies on oxidative stress in liver diseases: important future trends in liver research. Med Mol Morphol 39:22–27

    Article  PubMed  CAS  Google Scholar 

  9. Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2

    PubMed  CAS  Google Scholar 

  10. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    Article  PubMed  CAS  Google Scholar 

  11. El Barbary A, Altschuler RA, Schacht J (1993) Glutathione Stransferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear Res 71:80–90

    Article  PubMed  Google Scholar 

  12. Ravi R, Somani SM, Rybak LP (1995) Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacol Toxicol 76:386–394

    PubMed  CAS  Google Scholar 

  13. Rybak LP, Ravi R, Somani SM (1995) Mechanism of protection by diethyldithiocarbamate against cisplatin ototoxicity: antioxidant system. Fundam Appl Toxicol 26:293–300

    Article  PubMed  CAS  Google Scholar 

  14. Yao X, Rarey KE (1996) Detection and regulation of Cu/Zn-SOD and Mn-SOD in rat cochlear tissues. Hear Res 96:199–203

    Article  PubMed  CAS  Google Scholar 

  15. Rybak LP, Husain K, Evenson L, Morris C, Whitworth C, Somani SM (1997) Protection by 4-methylthiobenzoic acid against cisplatin induced ototoxicity: antioxidant system. Pharmacol Toxicol 81:173–179

    Article  PubMed  CAS  Google Scholar 

  16. Jakoby WB (1978) The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol 46:383–414

    Article  PubMed  CAS  Google Scholar 

  17. Salinas AE, Wong MG (1999) Glutathione S-transferases: a review. Curr Med Chem 6:279–309

    PubMed  CAS  Google Scholar 

  18. Mannervik B, Danielson UH (1988) Glutathione transferases: structure and catalytic activity. CRC Crit Rev Biochem 23:283–337

    Article  PubMed  CAS  Google Scholar 

  19. Meyer DJ, Coles B, Pemble SE, Glimore KS, Fraser GM, Ketterer B (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem J 274:409–414

    PubMed  CAS  Google Scholar 

  20. Touliatos JS, Neitzel L, Whitworth C, Rybak LP, Malafa M (2000) Effect of cisplatin on the expression of glutathione-S-transferase in the cochlea of the rat. Eur Arch Otorhinolaryngol 257:6–9

    Article  PubMed  CAS  Google Scholar 

  21. Whitlon DS, Wright LS, Nelson SA, Szakaly R, Siegel FL (1999) Maturation of cochlear glutathione-S-transferases correlates with the end of the sensitive period for ototoxicity. Hear Res 137:43–50

    Article  PubMed  CAS  Google Scholar 

  22. Takumi Y, Matsubara A, Tsuchida S, Ottersen OP, Shinkawa H, Usami S (2001) Various glutathione S-transferase isoforms in the rat cochlea. Neuroreport 25:1513–1516

    Article  Google Scholar 

  23. Lautermann J, Crann SA, McLaren J, Schacht J (1997) Glutathione-dependent antioxidant systems in the mammalian inner ear: effects of aging, ototoxic drugs and noise. Hear Res 114:75–82

    Article  PubMed  CAS  Google Scholar 

  24. Tabatabaie T, Floyd RA (1994) Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch Biochem Biophys 314:112–119

    Article  PubMed  CAS  Google Scholar 

  25. Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS (2000) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1:243–254

    Article  PubMed  CAS  Google Scholar 

  26. McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. a new fixation for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    PubMed  CAS  Google Scholar 

  27. Attias J, Pratt H (1985) Auditory-evoked potential correlates of susceptibility to noise-induced hearing loss. Audiology 24:149–156

    Article  PubMed  CAS  Google Scholar 

  28. Szymanski MD, Henry KR, Buchting FO (1994) Albino and pigmented gerbil auditory function: influence of genotype and gentamicin. Audiology 33:63–72

    Article  PubMed  CAS  Google Scholar 

  29. Shaddock LC, Hamerminik RP, Axelsson A (1984) Cochlea vascular and sensory cell changes induced by elevated temperature and noise. Am J Otolaryngol 5:99–107

    Article  PubMed  CAS  Google Scholar 

  30. Gratton MA, Wright CG (1992) Hyperpigmentation of chinchilla stria vascularis following acoustic trauma. Pigment Cell Res 5:30–37

    Article  PubMed  CAS  Google Scholar 

  31. Gratacap B, Charachon R, Stoebner P (1985) Results of an ultrastructural study comparing stria vascularis with organ of Corti in guinea pigs treated with kanamycin. Acta Otolaryngol 99:339–342

    Article  PubMed  CAS  Google Scholar 

  32. Franz P, Aharinejad S, Firbas W (1990) Melanocytes in the modiolous of the guinea pig cochlea. Acta Otolaryngol 109:221–227

    Article  PubMed  CAS  Google Scholar 

  33. Hilding DA, Ginzberg RD (1977) Pigmentation of the stria vascularis. The contribution of neural crest melanocytes. Acta Otolaryngol 84:24–37

    Article  PubMed  CAS  Google Scholar 

  34. Moral A, Palou J, Lafuente A, Molina R, Piulachs J, Castel T, Trias M (1997) Immunohistochemical study of alpha, mu and pi class glutathione S transferase expression in malignant melanoma. MMM Group. Multidisciplinary Malignant Melanoma Group. Br J Dermatol 136:345–350

    Article  PubMed  CAS  Google Scholar 

  35. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  36. Oberley TD, Oberley LW, Slattery AF, Elwell JH (1991) Immunohistochemical localization of glutathione-S-transferase and glutathione peroxidase in adult Syrian hamster tissues and during kidney development. Am J Pathol 139:355–369

    PubMed  CAS  Google Scholar 

  37. Coursin DB, Cihla HP, Oberley TD, Oberley LW (1992) Immunolocalization of antioxidant enzymes and isozymes of glutathione S-transferase in normal rat lung. Am J Physiol 263:L679–L691

    PubMed  CAS  Google Scholar 

  38. Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol 282:C403–C407

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimura, T., Suzuki, H., Udaka, T. et al. Immunoreactivities for glutathione S-transferases and glutathione peroxidase in the lateral wall of pigmented and albino guinea pig cochlea. Med Mol Morphol 41, 139–144 (2008). https://doi.org/10.1007/s00795-008-0405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-008-0405-z

Key words

Navigation