Skip to main content

Advertisement

Log in

Characterization of a thermoactive endoglucanase isolated from a biogas plant metagenome

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A metagenomic library from DNA isolated from a biogas plant was constructed and screened for thermoactive endoglucanases to gain insight into the enzymatic diversity involved in plant biomass breakdown at elevated temperatures. Two cellulase-encoding genes were identified and the corresponding proteins showed sequence similarities of 59% for Cel5A to a putative cellulase from Anaerolinea thermolimosa and 99% for Cel5B to a characterized endoglucanase isolated from a biogas plant reactor. The cellulase Cel5A consists of one catalytical domain showing sequence similarities to glycoside hydrolase family 5 and comprises 358 amino acids with a predicted molecular mass of 41.2 kDa. The gene coding for cel5A was successfully cloned and expressed in Escherichia coli C43(DE3). The recombinant protein was purified to homogeneity using affinity chromatography with a specific activity of 182 U/mg, and a yield of 74%. Enzymatic activity was detectable towards cellulose and mannan containing substrates and over a broad temperature range from 40 °C to 70 °C and a pH range from 4.0 to 7.0 with maximal activity at 55 °C and pH 5.0. Cel5A showed high thermostability at 60 °C without loss of activity after 24 h. Due to the enzymatic characteristics, Cel5A is an attractive candidate for the degradation of lignocellulosic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) Expasy: sib bioinformatics resource portal. Nucleic Acids Res 40((Web Server issue)):W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béguin P (1983) Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem 131(2):333–336

    Article  PubMed  Google Scholar 

  • Ben Hania W, Godbane R, Postec A, Hamdi M, Ollivier B, Fardeau ML (2012) Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. Int J Syst Evol Microbiol 62(Pt 6):1377–1382

    Article  CAS  PubMed  Google Scholar 

  • Bernfeld P (1955) Amylases, alpha and beta. Methods Enzymol 1:149–158

    CAS  Google Scholar 

  • Britton HTS, Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc:1456–1473

  • Elleuche S, Schaefers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

  • Ethier N, Talbot G, Sygusch J (1998) Gene cloning, DNA sequencing, and expression of thermostable beta-mannanase from Bacillus stearothermophilus. Appl Environ Microbiol 64(11):4428–4432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes E, Rodrigues de Souza A, Ladino-Orjuela G, Da Silva R, Oliveira T, Rodrigues A (2016) Applications and benefits of thermophilic microorganisms and their enzymes for industrial biotechnology. https://doi.org/10.1007/978-3-319-27951-0_21

    Google Scholar 

  • Hall J, Hazlewood GP, Barker PJ, Gilbert HJ (1988) Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B (1998) Glycosidase families. Biochem Soc Trans 26(2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644

    Article  CAS  PubMed  Google Scholar 

  • Ilmberger N, Streit WR (2017) Screening for cellulase encoding clones in metagenomic libraries. Methods Mol Biol 1539:205–217

    Article  CAS  PubMed  Google Scholar 

  • Ilmberger N, Meske D, Juergensen J, Schulte M, Barthen P, Rabausch U, Angelov A, Mientus M, Liebl W, Schmitz RA, Streit WR (2012) Metagenomic cellulases highly tolerant towards the presence of ionic liquids-linking thermostability and halotolerance. Appl Microbiol Biotechnol 95(1):135–146

    Article  CAS  PubMed  Google Scholar 

  • Klippel B, Antranikian G (2011) Lignocellulose converting enzymes from thermophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 443–474

    Chapter  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lewin A, Zhou J, Pham VTT, Haugen T, Zeiny ME, Aarstad O, Liebl W, Wentzel A, Liles MR (2017) Novel archaeal thermostable cellulases from an oil reservoir metagenome. AMB Express 7(1):183

    Article  PubMed  PubMed Central  Google Scholar 

  • Li LL, Taghavi S, McCorkle SM, Zhang YB, Blewitt MG, Brunecky R, Adney WS, Himmel ME, Brumm P, Drinkwater C, Mead DA, Tringe SG, Lelie D (2011) Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases. Biotechnol Biofuels 4(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (cazy) in 2013. Nucleic Acids Res 42((Database issue)):D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer P, Konig H, Schwarz WH, Zverlov VV, Liebl W, Puhler A, Schluter A, Klocke M (2016) Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 9:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Combust 38(4):522–550

    Article  CAS  Google Scholar 

  • Navas J, Béguin P (1992) Site-induced mutagenesis of conserved residues of Clostridium thermocellum endoglucanase celc. Biochem Biophys Res Communi 189(2):807–812

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) Signalp 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33(6 Pt 1):633–647

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tull D, Meinke A, Gilkes NR, Warren RA, Aebersold R, Withers SG (1993) Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-beta-1,4-glucanase. J Biol Chem 268(19):14096–14102

    CAS  PubMed  Google Scholar 

  • Wanmolee W, Sornlake W, Rattanaphan N, Suwannarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes anaerolineae classis nov. and caldilineae classis nov. In the bacterial phylum chloroflexi. Int J Syst Evol Microbiol 56(Pt 6):1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, Liu B (2017) High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol Lett 39(1):123–131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Klippel.

Additional information

Communicated by H. Atomi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klippel, B., Blank, S., Janzer, VA. et al. Characterization of a thermoactive endoglucanase isolated from a biogas plant metagenome. Extremophiles 23, 479–486 (2019). https://doi.org/10.1007/s00792-019-01099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-019-01099-3

Keywords

Navigation