Skip to main content
Log in

Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Functional and structural characterizations of pyridoxal 5′-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5′-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of d-amino acids. Unexpectedly, the proportion of d-aspartate to total aspartate was not very high. In contrast, both d-proline and d-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PtoAspR:

Aspartate racemase of Picrophilus torridus

TFA:

Trifluoroacetic acid

NBD-F:

4-Fluoro-7-nitrobenzofurazan

PLP:

Pyridoxal 5′-phosphate

References

  • Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221. doi:10.1107/S0907444909052925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21. doi:10.1107/S0907444909042073

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501. doi:10.1107/S0907444910007493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101(24):9091–9096. doi:10.1073/pnas.0401356101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami R, Ohmori T, Sakuraba H, Ohshima T (2015) Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by d-amino acids. Amino Acids 47(8):1579–1587. doi:10.1007/s00726-015-2001-6

    Article  CAS  PubMed  Google Scholar 

  • Klingl A (2014) S-layer and cytoplasmic membrane—exceptions from the typical archaeal cell wall with a focus on double membranes. Front Microbiol 5:624. doi:10.3389/fmicb.2014.00624

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Iwata K, Yohda M, Miki K (2002) Structural insight into gene duplication, gene fusion and domain swapping in the evolution of PLP-independent amino acid racemases. FEBS Lett 528(1–3):114–118

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Lee JA, Okamoto T, Sekine M, Nimura N, Imai K, Yohda M, Maruyama T, Sumi M, Kamo N, Yamagishi A, Oshima T, Homma H (2001a) Occurrence of d-amino acids and a pyridoxal 5′-phosphate-dependent aspartate racemase in the acidothermophilic archaeon, Thermoplasma acidophilum. Biochem Biophys Res Commun 281(2):317–321. doi:10.1006/bbrc.2001.4353

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Nimura N, Adachi M, Sekine M, Hanai T, Kubo H, Homma H (2001b) Determination of d- and l-aspartate in cell culturing medium, within cells of MPT1 cell line and in rat blood by a column-switching high-performance liquid chromatogrpahic method. J Chromatogr B Biomed Sci Appl 761(1):99–106

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Homma H, Long Z, Imai K, Iida T, Maruyama T, Aikawa Y, Endo I, Yohda M (1999) Occurrence of free d-amino acids and aspartate racemases in hyperthermophilic archaea. J Bacteriol 181(20):6560–6563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtaki A, Nakano Y, Iizuka R, Arakawa T, Yamada K, Odaka M, Yohda M (2008) Structure of aspartate racemase complexed with a dual substrate analogue, citric acid, and implications for the reaction mechanism. Proteins 70(4):1167–1174. doi:10.1002/prot.21528

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Yohda M, Giga-Hama Y, Ueno Y, Ohdo S, Kumagai H (1991) Distribution and purification of aspartate racemase in lactic acid bacteria. Biochim Biophys Acta 1078(3):377–382

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Radkov AD, Moe LA (2014) Bacterial synthesis of d-amino acids. Appl Microbiol Biotechnol 98(12):5363–5374. doi:10.1007/s00253-014-5726-3

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Puhler G, Kuhlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375(6534):741–742. doi:10.1038/375741b0

    Article  CAS  PubMed  Google Scholar 

  • Staudenbauer W, Strominger JL (1972) Activation of d-aspartic acid for incorporation into peptidoglycan. J Biol Chem 247(16):5095–5102

    CAS  PubMed  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(Pt 4):235–242. doi:10.1107/S0907444910045749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5′-phosphate-independent amino acid racemase. J Biol Chem 267(26):18361–18364

    CAS  PubMed  Google Scholar 

  • Yohda M, Okada H, Kumagai H (1991) Molecular cloning and nucleotide sequencing of the aspartate racemase gene from lactic acid bacteria Streptococcus thermophilus. Biochim Biophys Acta 1089(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Yohda M, Endo I, Abe Y, Ohta T, Iida T, Maruyama T, Kagawa Y (1996) Gene for aspartate racemase from the sulfur-dependent hyperthermophilic archaeum, Desulfurococcus strain SY. J Biol Chem 271(36):22017–22021

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Seko T, Okada O, Iwata K, Liu L, Miki K, Yohda M (2006) Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature. Proteins 64(2):502–512. doi:10.1002/prot.21010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the beamline assistants at the Photon Factory (PF) for data collection at the beamlines BL-5A, BL-6A and AR-NW12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yohda.

Additional information

Communicated by H. Atomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aihara, T., Ito, T., Yamanaka, Y. et al. Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus . Extremophiles 20, 385–393 (2016). https://doi.org/10.1007/s00792-016-0829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0829-7

Keywords

Navigation