Skip to main content

Advertisement

Log in

Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We have previously reported a non-processive endo-type chitinase, ChiA, from a newly isolated marine psychrophilic bacterium, Pseudoalteromonas sp. DL-6. In this study, a processive exo-type chitinase, ChiC, was cloned from the same bacterium and characterized in detail. ChiC could hydrolyze crystalline chitin into (GlcNAc)2 as the only observed product. It exhibited high catalytic activity even at low temperatures, e.g. close to 0 °C, or in the presence of 5 M NaCl, suggesting that ChiC was a cold-adapted and highly salt-tolerant chitinase. ChiC could also hydrolyze other substrates, including chitosan and Avicel, indicating its broad substrate specificity. Sequence features indicated that ChiC was a multi-domain protein having a deep substrate-binding groove that was regarded as characteristic of processive exo-chitinases. Enzymatic hydrolysis of chitin by ChiC could be remarkably boosted in the presence of ChiA, suggesting the synergy of ChiC and ChiA. This work provided a new evidence to prove that marine psychrophilic bacteria utilized a synergistic enzyme system to degrade recalcitrant chitin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bendt A, Huller H, Kammel U, Helmke E, Schweder T (2001) Cloning, expression, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7. Extremophiles 5:119–126

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  • Brameld KA, Goddard WA (1998) Substrate distortion to a boat conformation at subsite-1 is critical in the mechanism of family 18 chitinases. J Am Chem Soc 120:3571–3580

    Article  CAS  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chavan SB, Deshpande MV (2013) Chitinolytic enzymes: an appraisal as a product of commercial potential. Biotechnol Progr 29:833–846

    Article  CAS  Google Scholar 

  • Elleuche S, Schroder C, Sahm K, Antranikian G (2014) Extremozymes–biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Saito T, Isogai A (2008) Preparation of chitin nanofibers from squid pen beta-chitin by simple mechanical treatment under acid conditions. Biomacromolecules 9:1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Ikegami T, Seino S, Ohuchi N, Fukada H, Sugiyama J, Shirakawa M, Watanabe T (2000) Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J Bacteriol 182:3045–3054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VG (2006a) Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci USA 103:18089–18094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horn SJ, Sorbotten A, Synstad B, Sikorski P, Sorlie M, Varum KM, Eijsink VG (2006b) Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273:491–503

    Article  CAS  PubMed  Google Scholar 

  • Horn SJ, Sorlie M, Vaaje-Kolstad G, Norberg AL, Synstad B, Varum KM, Eijsink VGH (2006c) Comparative studies of chitinases A, B and C from Serratia marcescens. Biocatal Biotransform 24:39–53

    Article  CAS  Google Scholar 

  • Hult EL, Katouno F, Uchiyama T, Watanabe T, Sugiyama J (2005) Molecular directionality in crystalline b-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem J 388:851–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156

    Article  CAS  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malecki PH, Raczynska JE, Vorgias CE, Rypniewski W (2013) Structure of a complete four-domain chitinase from Moritella marina, a marine psychrophilic bacterium. Acta Crystallogr D Biol Crystallogr 69:821–829

    Article  CAS  PubMed  Google Scholar 

  • Nagpure A, Choudhary B, Gupta RK (2014) Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol 34:215–232

    Article  CAS  PubMed  Google Scholar 

  • Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF (2012) Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem 287:20603–20612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orikoshi H, Nakayama S, Hanato C, Miyamoto K, Tsujibo H (2005a) Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp strain O-7. J Appl Microbiol 99:551–557

    Article  CAS  PubMed  Google Scholar 

  • Orikoshi H, Nakayama S, Miyamoto K, Hanato C, Yasuda M, Inamori Y, Tsujibo H (2005b) Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Appl Environ Microbiol 71:1811–1815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Payne CM, Baban J, Horn SJ, Backe PH, Arvai AS, Dalhus B, Bjørås M, Eijsink VG, Sørlie M, Beckham GT, Vaaje-Kolstad G (2012) Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J Biol Chem 287:36322–36330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin QL, Li Y, Zhang YJ, Zhou ZM, Zhang WX, Chen XL, Zhang XY, Zhou BC, Wang L, Zhang YZ (2010) Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME J 5:274–284

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramli A, Mahadi N, Rabu A, Murad A, Bakar F, Illias R (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact 10:94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sannan T, Kurita K, Iwakura Y (1976) Effect of deacetylation on solubility. Macromol Chem 177:3589–3600

    Article  CAS  Google Scholar 

  • Shimahara K, Takiguchi Y (1988) Preparation of crustacean chitin. Method Enzymol 161:417–423

    Article  CAS  Google Scholar 

  • Sorbotten A, Horn SJ, Eijsink VGH, Varum KM (2005) Degradation of chitosans with chitinase B from Serratia marcescens—production of chito-oligosaccharides and insight into enzyme processivity. FEBS J 272:538–549

    Article  CAS  PubMed  Google Scholar 

  • Stefanidi E, Vorgias CE (2008) Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme. Extremophiles 12:541–552

    Article  CAS  PubMed  Google Scholar 

  • Techkarnjanaruk S, Goodman AE (1999) Multiple genes involved in chitin degradation from the marine bacterium Pseudoalteromonas sp. strain S91. Microbiology 145:925–934

    Article  CAS  PubMed  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    Article  CAS  PubMed  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide-gel electrophoresis. Anal Biochem 178:362–366

    Article  CAS  PubMed  Google Scholar 

  • Uni F, Lee S, Yatsunami R, Fukui T, Nakamura S (2012) Mutational analysis of a CBM family 5 chitin-binding domain of an alkaline chitinase from Bacillus sp. J813. Biosci Biotechnol Biochem 76:530–535

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Bunaes AC, Mathiesen G, Eijsink VGH (2009) The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of α- and β-chitin. FEBS J 276:2402–2415

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sorlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VGH (2013) The chitinolytic machinery of Serratia marcescens—a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 280:3028–3049

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao Y, Tan H, Chi N, Zhang Q, Du Y, Yin H (2014) Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium. Int J Biol Macromol 70:455–462

    Article  CAS  PubMed  Google Scholar 

  • Zakariassen H, Aam BB, Horn SJ, Varum KM, Sorlie M, Eijsink VG (2009) Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem 284:10610–10617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the program for National High-tech Research and Development Program 863 (2014AA093604), National Science Foundation (No. 31500039; No. 31300668), National High-tech Research and Development Program 863 (2012AA021501), and the Key Deployment Program of Chinese Academy of Sciences (KSZD-EW-Z-015-2). Dr. Heng Yin was supported by Youth Innovation Promotion Association of Chinese Academy of Sciences (2015144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhao or Heng Yin.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chi, N., Bai, F. et al. Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6. Extremophiles 20, 167–176 (2016). https://doi.org/10.1007/s00792-016-0810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0810-5

Keywords

Navigation