Skip to main content
Log in

A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blumentals II, Brown SH, Schicho RN, Skaja AK, Costantino HR, Kelly RM (1990) The hyperthermophilic archaebacterium, Pyrococcus furiosus. Development of culturing protocols, perspectives on scaleup, and potential applications. ANN NY Acad Sci 589:301–314

    Article  CAS  PubMed  Google Scholar 

  • Bridger SL et al (2011) Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus. J Bacteriol 193:6498–6504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bridger SL, Lancaster WA, Poole FL 2nd, Schut GJ, Adams MW (2012) Genome sequencing of a genetically tractable Pyrococcus furiosus strain reveals a highly dynamic genome. J Bacteriol 194:4097–4106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calvo JM, Matthews RG (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58:466–490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Calvo JM (2002) Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. J Mol Biol 318:1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Chou CJ, Shockley KR, Conners SB, Lewis DL, Comfort DA, Adams MW, Kelly RM (2007) Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 73:6842–6853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen GN et al (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512

    Article  CAS  PubMed  Google Scholar 

  • Costantino HR, Brown SH, Kelly RM (1990) Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105–115 °C. J Bacteriol 172:3654–3660

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dam P, Olman V, Harris K, Su Z, Xu Y (2007) Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res 35:288–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336

    Article  CAS  PubMed  Google Scholar 

  • DiRuggiero J, Brown JR, Bogert AP, Robb FT (1999) DNA repair systems in archaea: mementos from the last universal common ancestor? J Mol Evol 49:474–484

    Article  CAS  PubMed  Google Scholar 

  • Drake JW (1991a) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drake JW (1991b) Mutation: major evolutionary trends. Nucleic Acids Symp Ser:159-160

  • Drake JW (1991c) Spontaneous mutation. Annu Rev Genet 25:125–146

    Article  CAS  PubMed  Google Scholar 

  • Drake JW (2009) Avoiding dangerous missense: thermophiles display especially low mutation rates. PLoS Genet 5:e1000520

    Article  PubMed Central  PubMed  Google Scholar 

  • Driskill LE, Bauer MW, Kelly RM (1999) Synergistic interactions among beta-laminarinase, beta-1,4-glucanase, and beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus during hydrolysis of beta-1,4-, beta-1,3-, and mixed-linked polysaccharides. Biotechnol Bioeng 66:51–60

    Article  CAS  PubMed  Google Scholar 

  • Fluhe L, Knappe TA, Gattner MJ, Schafer A, Burghaus O, Linne U, Marahiel MA (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol 8:350–357

    Article  PubMed  Google Scholar 

  • French SL, Santangelo TJ, Beyer AL, Reeve JN (2007) Transcription and translation are coupled in Archaea. Mol Biol Evol 24:893–895

    Article  CAS  PubMed  Google Scholar 

  • Friedrich A, Rumszauer J, Henne A, Averhoff B (2003) Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl Environ Microbiol 69:3695–3700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frols S (2013) Archaeal biofilms: widespread and complex. Biochem Soc Trans 41:393–398

    Article  PubMed  Google Scholar 

  • Grogan DW (1998) Hyperthermophiles and the problem of DNA instability. Mol Microbiol 28:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hale C, Kleppe K, Terns RM, Terns MP (2008) Prokaryotic silencing (psi) RNAs in Pyrococcus furiosus. RNA 14:2572–2579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hale CR et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayat MA, Miller SE (1990) Negative staining. McGraw-Hill, New York

    Google Scholar 

  • Hoaki T, Wirsen CO, Hanzawa S, Maruyama T, Jannasch HW (1993) Amino acid requirements of two hyperthermophilic archaeal isolates from deep-sea vents,Desulfurococcus strain SY and Pyrococcus strain GB-D. Appl Environ Microbiol 59:610–613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoaki T, Nishijima M, Kato M, Adachi K, Mizobuchi S, Hanzawa N, Maruyama T (1994) Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl Environ Microbiol 60:2898–2904

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keller MW et al (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci USA 110:5840–5845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kengen SW, de Bok FA, van Loo ND, Dijkema C, Stams AJ, de Vos WM (1994) Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem 269:17537–17541

    CAS  PubMed  Google Scholar 

  • Lee HS et al (2006) Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 188:2115–2125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipscomb GL et al (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77:2232–2238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackwan RR, Carver GT, Kissling GE, Drake JW, Grogan DW (2008) The rate and character of spontaneous mutation in Thermus thermophilus. Genetics 180:17–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majernik AI, Jenkinson ER, Chong JP (2004) DNA replication in thermophiles. Biochem Soc Trans 32:236–239

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maki H (2002) Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet 36:279–303

    Article  CAS  PubMed  Google Scholar 

  • Mao F, Dam P, Chou J, Olman V, Xu Y (2009) DOOR: a database for prokaryotic operons. Nucleic Acids Res 37:D459–D463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martusewitsch E, Sensen CW, Schleper C (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182:2574–2581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66:198–200

    Article  CAS  PubMed  Google Scholar 

  • Montero CI et al (2007) Responses of wild-type and resistant strains of the hyperthermophilic bacterium Thermotoga maritima to chloramphenicol challenge. Appl Environ Microbiol 73:5058–5065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy K, O’Sullivan O, Rea MC, Cotter PD, Ross RP, Hill C (2011) Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PloS one 6:e20852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nather DJ, Rachel R, Wanner G, Wirth R (2006) Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell–cell contacts. J Bacteriol 188:6915–6923

    Article  PubMed Central  PubMed  Google Scholar 

  • Newman EB, Lin R (1995) Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Ann rev microbiol 49:747–775

    Article  CAS  Google Scholar 

  • Ogasawara H, Yamamoto K, Ishihama A (2011) Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 193:2587–2597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omelchenko MV et al (2005) Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5:57

    Article  PubMed Central  PubMed  Google Scholar 

  • Orell A, Frols S, Albers SV (2013a) Archaeal biofilms: the great unexplored. Annu Rev Microbiol 67:337–354

    Article  CAS  PubMed  Google Scholar 

  • Orell A, Peeters E, Vassen V, Jachlewski S, Schalles S, Siebers B, Albers SV (2013b) Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME Journal 7:1886–1898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rinker KD, Kelly RM (1996) Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl Environ Microbiol 62:4478–4485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rinker KD, Kelly RM (2000) Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol Bioeng 69:537–547

    Article  CAS  PubMed  Google Scholar 

  • Santangelo TJ, Cubonova L, Matsumi R, Atomi H, Imanaka T, Reeve JN (2008) Polarity in archaeal operon transcription in Thermococcus kodakaraensis. J Bacteriol 190:2244–2248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serra DO, Richter AM, Klauck G, Mika F, Hengge R (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4:e00103–e00113

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaikh AS, Tang YJ, Mukhopadhyay A, Martin HG, Gin J, Benke PI, Keasling JD (2010) Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein. Biotechnol Prog 26:52–56

    CAS  PubMed  Google Scholar 

  • Snowden LJ, Blumentals II, Kelly RM (1992) Regulation of proteolytic activity in the hyperthermophile Pyrococcus furiosus. Appl Environ Microbiol 58:1134–1141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas NA, Jarrell KF (2001) Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins. J Bacteriol 183:7154–7164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voorhorst WG et al (1999) Transcriptional regulation in the hyperthermophilic archaeon Pyrococcus furiosus: coordinated expression of divergently oriented genes in response to beta-linked glucose polymers. J Bacteriol 181:3777–3783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward DE, Kengen SW, van Der Oost J, de Vos WM (2000) Purification and characterization of the alanine aminotransferase from the hyperthermophilic Archaeon Pyrococcus furiosus and its role in alanine production. J Bacteriol 182:2559–2566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watrin L, Prieur D (1996) UV and ethyl methanesulfonate effects in hyperthermophilic archaea and isolation of auxotrophic mutants of Pyrococcus strains. Curr Microbiol 33:377–382

    Article  CAS  PubMed  Google Scholar 

  • Watrin L, Martin-Jezequel V, Prieur D (1995) Minimal amino acid requirements of the hyperthermophilic archaeon Pyrococcus abyssi, isolated from deep-sea hydrothermal vents. Appl Environ Microbiol 61:1138–1140

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams E, Lowe TM, Savas J, DiRuggiero J (2007) Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 11:19–29

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–W724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokoyama K et al (2006) Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol Rev 30:89–108

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K et al (2007) Feast/famine regulation by transcription factor FL11 for the survival of the hyperthermophilic archaeon Pyrococcus OT3. Structure 15:1542–1554

    Article  CAS  PubMed  Google Scholar 

  • Zolghadr B, Klingl A, Koerdt A, Driessen AJ, Rachel R, Albers SV (2010) Appendage-mediated surface adherence of Sulfolobus solfataricus. J Bacteriol 192:104–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from National Science Foundation (CBT-0730091) to RMK. Construction and characterization of the deletion mutants was funded by a grant to MWA (FG05-95ER20175) from the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, and U.S. Department of Energy. The authors are grateful to Dr. Jennifer Schaff, Genome Sciences Laboratory at NCSU, for her help with genome sequencing and Dr. Michael J. Dykstra, LAELOM, College of Veterinary Medicine, NCSU, for help with TEM and SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Kelly.

Additional information

Communicated by H. Atomi.

D. L. Lewis, J. S. Notey contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, D.L., Notey, J.S., Chandrayan, S.K. et al. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology. Extremophiles 19, 269–281 (2015). https://doi.org/10.1007/s00792-014-0712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0712-3

Keywords

Navigation