Skip to main content
Log in

Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The availability of microbiological and geochemical data from island-based and high-arsenic hydrothermal systems is limited. Here, the microbial diversity in island-based hot springs on Ambitle Island (Papua New Guinea) was investigated using culture-dependent and -independent methods. Waramung and Kapkai are alkaline springs high in sulfide and arsenic, related hydrologically to previously described hydrothermal vents in nearby Tutum Bay. Enrichments were carried out at 24 conditions with varying temperature (45, 80 °C), pH (6.5, 8.5), terminal electron acceptors (O2, SO4 2−, S0, NO3 ), and electron donors (organic carbon, H2, AsIII). Growth was observed in 20 of 72 tubes, with media targeting heterotrophic metabolisms the most successful. 16S ribosomal RNA gene surveys of environmental samples revealed representatives in 15 bacterial phyla and 8 archaeal orders. While the Kapkai 4 bacterial clone library is primarily made up of Thermodesulfobacteria (74 %), no bacterial taxon represents a majority in the Kapkai 3 and Waramung samples (40 % Proteobacteria and 39 % Aquificae, respectively). Deinococcus/Thermus and Thermotogae are observed in all samples. The Thermococcales dominate the archaeal clone libraries (65–85 %). Thermoproteales, Desulfurococcales, and uncultured Eury- and Crenarchaeota make up the remaining archaeal taxonomic diversity. The culturing and phylogenetic results are consistent with the geochemistry of the alkaline, saline, and sulfide-rich fluids. When compared to other alkaline, island-based, high-arsenic, or shallow-sea hydrothermal communities, the Ambitle Island archaeal communities are unique in geochemical conditions, and in taxonomic diversity, richness, and evenness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiuppa A, D’Alessandro W, Federico C, Palumbo B, Valenza M (2003) The aquatic geochemistry of arsenic in volcanic groundwaters from Southern Italy. Appl Geochem 18:1283–1296

    Article  CAS  Google Scholar 

  • Akerman, NH, 2009. Microbial Diversity and Geochemical Energy Sources of Tutum Bay, Ambitle Island, Papua New Guinea, and Arsenic-Rich, Shallow-Sea Hydrothermal System. Ph.D. Thesis, Washington University in St. Louis, St. Louis, MO

  • Akerman NH, Price RE, Pichler T, Amend JP (2011) Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. Geobiology 9:436–445

    CAS  PubMed  Google Scholar 

  • Alain K, Callac N, Guégan M, Lesongeur F, Crassous P, Cambon-Bonavita M-A, Querellou J, Prieur D (2009) Nautilia abyssi, sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque L, Santos J, Travassos P, Fernanda Nobre M, Rainey FA, Wait R, Empadinhas N, Silva MT, da Costa MS (2002) Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl Environ Microbiol 68:4266–4273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alves MP, Rainey FA, Nobre MF, da Costa MS (2003) Thermomonas hydrothermalis sp. nov., a new slightly thermophilic γ-Proteobacterium isolated from a hot spring in central Portugal. Syst Appl Microbiol 26:70–75

    Article  CAS  PubMed  Google Scholar 

  • Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243

    Article  CAS  PubMed  Google Scholar 

  • Amend JP, Rogers KL, Shock EL, Inguaggiato S, Gurrieri S (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1:37–58

    Article  CAS  Google Scholar 

  • Arnorsson S (2003) Arsenic in surface- and up to 90 °C ground waters in a basalt area, N-Iceland: processes controlling its mobility. Appl Geochem 18:1297–1312

    Article  CAS  Google Scholar 

  • Baba A, Sözbilir H (2012) Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey. Chem Geol 334:364–377

    Article  CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Kostrikina NA, Chernych NA, Zavarzin GA (1990) Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559

    CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Bundschuh J, Maity JP, Nath B, Baba A, Gunduz O, Kulp TR, Jean J-S, Kar S, Yang H-J, Tseng Y-J, Bhattacharya P, Chen C-Y (2013) Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources, J Hazard Mater 262:951–959

  • Busse H-J, Kämpfer P, Moore ERB, Nuutinen J, Tsitko IV, Denner EBM, Vauterin L, Valens M, Rosselló-Mora R, Salkinoja-Salonen MS (2002) Thermomonas haemolytica gen. nov., sp. nov., a γ-proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52:473–483

    CAS  PubMed  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chen T-L, Chou Y-J, Chen W-M, Arun B, Young C-C (2006) Tepidimonas taiwanensis sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring. Extremophiles 10:35–40

    Article  CAS  PubMed  Google Scholar 

  • Childs AM, Mountain BW, O’Toole R, Stott MB (2008) Relating microbial community and physicochemical parameters ofa hot spring: Champagne Pool, Wai-o-tapu, New Zealand. Geomicrobiol J 25:441–453

    Article  CAS  Google Scholar 

  • Coman C, Drugă B, Hegedus A, Sicora C, Dragoş N (2013) Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 17:523–534

    Article  PubMed  Google Scholar 

  • da Costa MS, Rainey FA, Nobre MF (2006) The genus Thermus and relatives. In: Stackebrandt E, Dworkin M, Falkow S, Rosenberg E, Schleifer K-H (eds) The Prokaryotes. Springer, New York, pp 797–812

    Chapter  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Anderson GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donahoe-Christiansen J, D’Imperio S, Jackson CR, Inskeep WP, McDermott TR (2004) Arsenite-oxidizing Hydrogenobaculum strain isolated form an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dotsika E (2012) Isotope and hydrochemical assessment of the Samothraki Island geothermal area, Greece. J Volcanol Geotherm Res 233–234:18–26

    Article  Google Scholar 

  • Götz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BRT, Reysenbach AL (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359

    Article  PubMed  Google Scholar 

  • Guo Q, Wang Y (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. J Volcanol Geotherm Res 215–216:61–73

    Article  Google Scholar 

  • Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res 41:95–98

    CAS  Google Scholar 

  • Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth JA, Hedlund BP, Zhang CL, Hartnett HE, Dijkstra P, Hungate B (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 8(1):e53350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351

    Article  Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament forming hyperthermophilic Bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inskeep WP, Macur RE, Harrison G, Bostick BJ, Fendorf S (2004) Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park. Geochim Cosmochim Acta 68:3141–3155

    Article  CAS  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542

    Article  CAS  PubMed  Google Scholar 

  • Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana, sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104

    Article  Google Scholar 

  • Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach A-L, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52:765–772

    Article  CAS  PubMed  Google Scholar 

  • Joseph EP, Fournier N, Lindsay JM, Robertson R, Beckles DM (2013) Chemical and isotopic characteristics of geothermal fluids from Sulfur Springs, Saint Lucia. J Volcanol Geotherm Res 254:23–36

    Article  CAS  Google Scholar 

  • Kaasalainen H, Stefánsson A (2012) The chemistry of trace elements in surface geothermal waters and steam, Iceland. Chem Geol 330–331:60–85

    Article  Google Scholar 

  • Kang YS, Yang HL, Lee SD (2009) Nitratireductor kimnyeongensis sp. nov., isolated from seaweed. Int J Syst Evol Microbiol 59:1036–1039

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Itoh T, Yamagishi A (2011) Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. FEMS Microbiol Res Lett 319:34–43

    Article  CAS  Google Scholar 

  • Kim Phuong N, Harijoko A, Itoi R, Unoki Y (2012) Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia. J Volcanol Geotherm Res 229–230:23–33

    Article  Google Scholar 

  • Kim K-H, Woon Roh S, Chang H-W, Nam Y-D, Yoon J-H, Jeon CO, Oh H-M, Bae J-W (2009) Nitratireductor basaltis sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 59:135–138

    Article  CAS  PubMed  Google Scholar 

  • Labbé N, Parent S, Villemur R (2004) Nitratireductor aquibiodomus gen. nov., sp. nov., a novel α-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int J Syst Evol Microbiol 54:269–273

    Article  PubMed  Google Scholar 

  • Landrum JT, Bennett PC, Summers Engel A, Alsina MA, Pasten PA, Milliken K (2009) Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile. Appl Geochem 24:664–676

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Langner HW, Jackson CR, McDermott TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35:3302–3309

    Article  CAS  PubMed  Google Scholar 

  • Le Guern C, Baranger P, Crouzet C, Bodenan F, Conil P (2003) Arsenic trapping by iron oxyhydroxides and carbonates at hydrothermal spring outlets. Appl Geochem 18:1313–1323

    Article  Google Scholar 

  • Licence PS, Terrill JE, Fergusson LJ (1987) Epithermal gold mineralisation, Ambitle Island, Papua New Guinea, Pacific Rim Congress 87. The Australasian Institute of Mining and Metallurgy, Gold Coast, pp 273–278

    Google Scholar 

  • Loiacono ST, Meyer-Dombard DR, Havig JR, Poret-Pederson A, Hartnett H, Shock EL (2012) Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park. Environ Microbiol 14(5):1272–1283

    Article  CAS  PubMed  Google Scholar 

  • Macur RE, Langner HW, Kocar BD, Inskeep WP (2004) Linking geochemical processes with microbial community analysis: successional dynamics in an arsenic-rich, acid-sulphate geothermal spring. Geobiology 2:163–177

    Article  CAS  Google Scholar 

  • McCleskey RB, Ball JW, Nordstrom DK, Holloway JM, Taylor HE (2004) Water-chemistry data for selected hot springs, geysers, and streams in Yellowstone National Park, Wyoming, 2001–2002, OFR 2004-1316, U.S. Geological Survey

  • Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227

    Article  Google Scholar 

  • Meyer-Dombard DR, Swingley W, Raymond J, Havig J, Shock EL, Summons RE (2011) Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park. Environ Microbiol 13:2216–2231

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Dombard DR, Shock EL, Amend JP (2012a) Effects of trace element concentrations on culturing thermophiles. Extremophiles 16:317–331

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Dombard DR, Price RE, Pichler T, Amend JP (2012b) Prokaryotic populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle Island, Papua New Guinea. Geomicrobiol J 29:1–17

    Article  CAS  Google Scholar 

  • Meyer-Dombard DR, Amend JP, Osburn MR (2013) Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea). Chem Geol 348:37–47

    Article  CAS  Google Scholar 

  • Moreira C, Rainey FA, Nobre MF, da Silva MT, da Costa MS (2000) Tepidimonas ignava gen. nov., sp. nov., a new chemolithoheterotrophic and slightly thermophilic member of the β-Proteobacteria. Int J Syst Evol Microbiol 50:735–742

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Takai K, Horikoshi K (2003) Persephonella hydrogenophila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869

    Article  CAS  PubMed  Google Scholar 

  • Niederberger TD, Gotz DK, McDonald IR et al (2006) Ignisphaera aggregans, gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int J Syst Evol Microbiol 56:965–971

    Article  CAS  PubMed  Google Scholar 

  • Niederberger TD, Ronimus RS, Morgan HW (2008) The microbial ecology of a high-temperature near-neutral spring situated in Rotorua, New Zealand. Microbiol Res 163:594–603

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom DK, Ball JW, McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. In: Inskeep W, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University, Thermal Biology Institute, Bozeman, pp 71–94

    Google Scholar 

  • Ozler HM (2000) Hydrogeology and geochemistry in the Curuksu (Denizli) hydrothermal field, western Turkey. Environ Geol 39:1169–1180

    Article  CAS  Google Scholar 

  • Pichler T (2005) Stable and radiogenic isotopes as tracers for the origin, mixing and subsurface history of fluids in submarine shallow-water hydrothermal systems. J Volcanol Geotherm Res 139:211–226

    Article  CAS  Google Scholar 

  • Pichler T, Dix GR (1996) Hydrothermal venting within a coral reef ecosystem, Ambitle Island, Papua New Guinea. Geology 24:435–438

    Article  CAS  Google Scholar 

  • Pichler T, Veizer J (1999) Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tatum Bay, Ambitle Island, Papua New Guinea. Chem Geol 162:15–31

    Article  CAS  Google Scholar 

  • Pichler T, Veizer J, Hall GEM (1999a) The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar Chem 64:229–252

    Article  CAS  Google Scholar 

  • Pichler T, Veizer J, Hall GEM (1999b) Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides. Environ Sci Technol 33:1373–1378

    Article  CAS  Google Scholar 

  • Pichler T, Amend JP, Garey JR, Hallock P, Hsia N, Karlen DJ, McCloskey BJ, Meyer-Dombard DR, Price RE (2006) A natural laboratory to study arsenic geobiocomplexity. EOS 87–23:221–225

    Article  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom K, Sandstrom MW (2006) Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim Cosmochim Acta 70:2480–2491

    Article  CAS  Google Scholar 

  • Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2013) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol. doi:10.1111/1462-2920.12249

    PubMed  Google Scholar 

  • Price RE, Pichler T (2005) Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chem Geol 224:122–135

    Article  CAS  Google Scholar 

  • Price RE, Amend JP, Pichler T (2007) Enhanced geochemical gradients in a marine shallow-water hydrothermal system: unusual arsenic speciation in vertical and horizontal pore water profiles. Appl Geochem 22:2595–2605

    Article  CAS  Google Scholar 

  • Price RE, Lesniewski R, Nitzsche KS, Meyerdierks A, Saltikov C, Pichler T, Amend JP (2013a) Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front Microbiol. doi:10.3389/fmicb.2013.00158

    Google Scholar 

  • Price RE, London J, Wallschlager D, Ruiz-Chancho MJ, Pichler T (2013b) Enhanced bioaccumulation and biotransformation of As in coral reef organisms surrounding a marine shallow-water hydrothermal vent system. Chem Geol 348:48–55

    Article  CAS  Google Scholar 

  • Pürschel M, Gloaguen R, Stadler S (2013) Geothermal activities in the main ethiopian rift: hydrogeochemical characterization of geothermal waters and geothermometry applications (Dofan-Fantale, Gergede-Sodere, Aluto-Langano). Geothermics 47:1–12

    Article  Google Scholar 

  • Robb FT, Place AR (eds) (1995) Thermophiles Archaea—a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, p 217

    Google Scholar 

  • Rogers KL, Amend JP (2005) Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology 3:319–332

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shock EL, Holland M, Meyer-Dombard DR, Amend JP (2005) Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: obsidian pool, Yellowstone National Park. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry of Yellowstone National Park. Thermal Biology Institute, Bozeman, pp 95–112

    Google Scholar 

  • Shock EL, Holland ME, Meyer-Dombard DR, Amend JP, Osburn GR, Fisher T (2010) Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim Cosmochim Acta 74:4005–4043

    Article  CAS  Google Scholar 

  • Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76:70–82

    Article  Google Scholar 

  • Spear JR, Walker JJ, McCollom TM, Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci 102:2555–2560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stauffer RE, Thompson JM (1984) Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 48:2547–2561

    Article  CAS  Google Scholar 

  • Stout L, Blake R, Greenwood J, Martini A, Rose E (2009) Microbial diversity of boron-rich volcanic hot springs of St. Lucia Lesser Antilles. FEMS Microbiol Ecol 70:402–412

    Article  CAS  PubMed  Google Scholar 

  • Summers Engel A, Johnson LR, Porter ML (2013) Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. FEMS Microbiol Ecol 83:745–756

    Article  Google Scholar 

  • Swingley WD, Meyer-Dombard DR, Alsop EB, Falenski HD, Havig JR, Shock EL, Raymond J (2012) Coordinated environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. PLoS One 7(6):e38108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takai K, Kobayahi H, Nealson KH, Horikoshi K (2003) Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846

    Article  CAS  PubMed  Google Scholar 

  • Tarcan G, Gemici U (2003) Water geochemistry of the Seferihisar geothermal area, Izmir, Turkey. J Volcanol Geotherm Res 126:225–242

    Article  CAS  Google Scholar 

  • Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43

    Article  CAS  PubMed  Google Scholar 

  • Wallace DA, Johnson RW, Chappell BW, Arculus RJ, Perfit MR, Crick IH (1983) Cainozoic volcanism of the Tabar, Lihir, Tanga, and Feni Islands, Papua New Guinea: Geology, whole-rock analyses, and rock-forming mineral compositions. Bur Miner Resour Aust Geol Geophys Rep 243:62

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winker S, Woese CR (1991) A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulfidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169

    CAS  Google Scholar 

  • Zillig W, Reysenbach A-L (2001) Genus I. Thermoproteus. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Spring, New York, pp 171–173

    Google Scholar 

  • Zillig W, Sterrer KO, Schäfer W, Janecovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralblatt für Bakteriologie Mikrobiol Hyg C2:205–227

    Google Scholar 

Download references

Acknowledgments

Thanks are due Thomas Pichler and Roy Price, instrumental in the field work in Papua New Guinea. Lauren Burcea generated the phylogenetic trees and maintained the enrichment experiments. This work was supported by NSF grants BC/CBC 0221834 and EAR 0447231. A special thanks goes to Chief Philippe of Ambitle Island (Fig. 1b), without whose skilled machete work the sampling sites would have remained inaccessible to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D’Arcy R. Meyer-Dombard.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer-Dombard, D.R., Amend, J.P. Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea. Extremophiles 18, 763–778 (2014). https://doi.org/10.1007/s00792-014-0657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0657-6

Keywords

Navigation