Skip to main content
Log in

On the potential of mass spectrometry-based metabolite profiling approaches to the study of biochemical adaptation in psychrophilic yeast

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

To move beyond targeted approaches to the biochemical characterization of psychrophilic yeast and provide a more holistic understanding of the chemistry of physiological adaptation of psychrophiles at the molecular level, ultraperformance liquid chromatography combined with simultaneous acquisition of low- and high-collision energy mass spectra (UPLC/MSe) was employed for a preliminary comparative analysis of cell extracts of psychrophilic Antarctic yeasts Cryptococcus vishniacii CBS 10616 and Dioszegia cryoxerica CBS 10919 versus the mesophile Saccharomyces cerevisiae ‘cry havoc’. A detailed workflow for providing high-confidence preliminary identifications of psychrophilic yeast-specific molecular features is presented. Preliminary identifications of psychrophile-specific features in C. vishniacii and D. cryoxerica determined with the described method include the glycerophospholipids lysophosphatidylcholine 18:2, lysophosphatidylcholine 18:3, lysophosphatidylethanolamine 18:3, and lysophosphatidylethanolamine 18:2. In addition, levels of guanosine diphosphate appear significantly elevated in cell extracts of the psychrophilic yeasts as compared to Saccharomyces cerevisiae. Finally, five psychrophilic yeast-specific peptides have been discovered. All of these are demonstrated to be glycine- and/or proline-rich, a known structural characteristic of many naturally occurring bioactive peptides. The potential of this untargeted metabolite profiling approach as a tool for knowledge discovery and hypothesis generation in the study of biodiversity and microbial adaptation is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amato P, Doyle S, Christner BC (2009) Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 11:589–596

    Article  PubMed  CAS  Google Scholar 

  • Anisimov OA, Vaughan TV, Callaghan C, Furgal F et al (2007) Polar regions (Arctic and Antarctic). In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 653–685

  • Bada JL, Bigham C, Miller SL (1994) Impact melting of frozen oceans on the early earth: implications for the origin of life. Proc Natl Acad Sci 91:1248–1250

    Article  PubMed  CAS  Google Scholar 

  • Baker VR (2001) Water and the Martian landscape. Nature 412:228–236

    Article  PubMed  CAS  Google Scholar 

  • Boo SY, Won CMVL, Rodrigues KF, Najimudin N et al (2013) Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol 36:381–389

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20:341–351

    Article  Google Scholar 

  • Callahan MP, Smith KE, Cleaves HJ II, Ruzicka J et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci. doi:10.1073/pnas.1106493108

    Google Scholar 

  • Cameron RE (1971) Antarctic soil microbial and ecological investigations. In: Quam LO, Porter HD (eds) Research in Antarctic. American Association for the Advancement of Science, Washington DC, pp 137–189

    Google Scholar 

  • Cameron RE (1972) Microbial and ecological investigations in Victoria Dry Valley, Southern Victoria Land, Antarctica. Antarct Res Ser (Washington) 20:195–260

    Article  Google Scholar 

  • Campbell IB, Claridge GGC, Campbell DI, Balks MR (1998) The soil environment of the McMurdo Dry Valleys, Antarctica. In: Priscu C (ed) Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica, Antarct Res Ser 72. American Geophysical Union, Washington DC, pp 297–322

    Google Scholar 

  • Castro-Perez JM, Kamphorst J, Degroot J et al (2010) Comprehensive LC-MSe lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J Proteome Res 9:2377–2389

    Article  PubMed  CAS  Google Scholar 

  • Chyba CF, Phillips CB (2002) Europa as an abode of life. Orig Life Evol Biosph 32:47–68

    Article  PubMed  Google Scholar 

  • Connell LB, Redman RS, Craig SD, Scorzetti G et al (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  PubMed  CAS  Google Scholar 

  • Connell LB, Templeton AS, Barrett A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    Article  CAS  Google Scholar 

  • Connell LB, Redman RS, Rodriguez RJ, Barrett A et al (2010) Dioszegia antarctica and D. cryoxerica spp. nov., two novel psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol 60:1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Connell LB, Rodriguez R, Redman RS, Dalluge JJ (2013) Cold-adapted yeasts in Antarctic deserts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer Verlag, Berlin (in press)

    Google Scholar 

  • Daffre S, Bulet P, Spisni A, Ehret-Sabatier L et al (2008) Bioactive natural peptides. Stud Nat Prod Chem 35:597–691

    Article  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 2002:301–309

    Article  Google Scholar 

  • Deming JW, Huston AL (2000) An oceanographic perspective on microbial life at low temperatures with implications for polar ecology, biotechnology and astrobiology. In: Seckbach J (ed) Cellular origins and life in extreme habitats. Kluwer, Dordrecht, pp 149–160

    Google Scholar 

  • DesMarais DJ, Walter MR (1999) Astrobiology: exploring the origins, evolution, and distribution of life in the universe. Annu Rev Ecol Syst 30:397–420

    Article  CAS  Google Scholar 

  • Doran PT, McKay CP, Clow GD, Dana GL et al (2002) Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J Geophys Res 107:ACL 13-1–ACL 13-12

    Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL et al (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochem Biophys Acta 1342:119–131

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CER et al (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180

    Article  PubMed  CAS  Google Scholar 

  • Glavin DP, Callahan MP, Dworkin JP, Elsila JE (2011) The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit Planet Sci 45:1948–1972

    Article  Google Scholar 

  • Good P, Caesar J, Bernie D, Lowe JA et al (2011) A review of recent developments in climate change science. Part I: understanding of future change in the large-scale climate system. Progr Phys Geography 35:281–296

    Google Scholar 

  • Gosling SN, Warren R, Arnell NW, Good P et al (2011) A review of recent developments in climate change science. Part II: the global-scale impacts of climate change. Progr Phys Geography 35:443–464

    Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptations. Princeton University Press, Princeton

    Google Scholar 

  • Ilic N, Novkovic M, Guida F, Xhindoli D et al (2013) Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim Biophys ACTA Biomembr 1828:1004–1012

    Article  CAS  Google Scholar 

  • Lazazzera BA (2001) The intracellular function of extracellular peptides. Peptides 22:1519–1527

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613

    Article  PubMed  CAS  Google Scholar 

  • Loffeld B, Keweloh H (1996) cis/trans isomerization of unsaturated fatty acids as a possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31:811–815

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002a) The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32:195–208

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002b) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    Article  PubMed  CAS  Google Scholar 

  • Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. Encycl Life Sci. doi:10.1002/9780470015902.a0000402.pub2:1-6

    Google Scholar 

  • Nylen TH, Fountain AG, Doran PT (2004) Climatology of katabatic winds in the McMurdo Dry Valleys, southern Victoria Land, Antarctica. J Geophys Res 109:D03114

    Article  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Daniela I et al (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109

    Article  PubMed  CAS  Google Scholar 

  • Onofri S, Selbmann L, Barreca D, Isola D, Zucconi L (2009) Do fungi survive under actual space conditions? Searching for evidence in favour of lithopanspermia. Plant Biosyst 143(sup 1):S85–S87

    Article  Google Scholar 

  • Otvos L (2000) Antibacterial peptides isolated from insects. J Peptide Sci 6:497–511

    Article  CAS  Google Scholar 

  • Resnick RJ, Tomaska L (1994) Stimulation of yeast adenylyl cyclase activity by lysophospholipids and fatty acids: implications for the regulation of Ras/effector function by lipids. J Biol Chem 269:32336–32341

    PubMed  CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Rozgonyi F, Szabo D, Kocsis B, Ostorhazi E et al (2009) The antibacterial effect of a proline-rich antibacterial peptide A3-APO. Curr Med Chem 16:3996–4002

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer Verlag, Berlin, pp 177–190

    Chapter  Google Scholar 

  • Slessareva J, Dohlman H (2006) G protein signaling in yeast: new components, new connections, new compartments. Science 314:1412–1413

    Article  PubMed  CAS  Google Scholar 

  • Theodoridis G, Gika HG, Wilson ID (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom Rev 30:884–906

    CAS  Google Scholar 

  • Vishniac HS, Hempfling WP (1979) Cryptococcus vishniacii sp. nov., an Antarctic Yeast. Int J Syst Bacteriol 29:153–158

    Article  Google Scholar 

  • Vlassov AV, Johnston BH, Landweber LF, Kazakov SA (2004) Ligation activity of fragmented ribozymes in frozen solution: implications for the RNA world. Nucleic Acids Res 32:2966–2974

    Article  PubMed  CAS  Google Scholar 

  • Weinstein RN, Palm ME, Johnstone K, Wyn-Williams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia 89:706–711

    Article  Google Scholar 

  • Weinstein RW, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    Article  CAS  Google Scholar 

  • Xin M, Zhou P (2000) Effect of temperature on the activity of some enzymes representative of EMP pathway and TCA cycle in psychrophilic yeast. Wei Sheng Wu Xue Bao 40:518–522

    PubMed  CAS  Google Scholar 

  • Yuan Y, Schoenwaelder SM, Salem HH, Jackson SP (1996) The bioactive phospholipid lysophosphatidylcholine induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J Biol Chem 271:27090–27098

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZT, Zhu SY (2012) Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species. Dev Comp Immunol 38:262–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF ANT 0739696. The authors wish to acknowledge Katharine Earle and Megan Altenritter for the preparation of quenched cultures of the psychrophilic and mesophilic yeasts studied here.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Dalluge.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalluge, J.J., Connell, L.B. On the potential of mass spectrometry-based metabolite profiling approaches to the study of biochemical adaptation in psychrophilic yeast. Extremophiles 17, 953–961 (2013). https://doi.org/10.1007/s00792-013-0577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0577-x

Keywords

Navigation