Skip to main content
Log in

Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Diversity of Crenarchaeota was investigated in eight terrestrial hot springs (pH 2.8–7.7; temperature 44–96°C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were sequenced and a total of 47 operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89–99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59–77°C) hot springs was the highest, indicating that the moderately hot-temperature springs may provide optimal conditions for speciation of Crenarchaeota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atlas RM, Bartha R (1997) Microbial ecology: fundamentals and applications. Longman, Menlo Park

    Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Boone DR, Castenholz RW (2001) Bergey’s Manual of Systematic Bacteriology: Vol. One: the archaea and the deeply branching and phototrophic bacteria. Springer, Berlin

    Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  PubMed  CAS  Google Scholar 

  • Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13:447–459

    Article  PubMed  CAS  Google Scholar 

  • Dawson S, DeLong EF, Pace NR (2006) Phylogenetic and ecological perspectives on uncultured Crenarchaeota and Korarchaeota. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York

    Google Scholar 

  • de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distribution of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63(4):1375–1381

    Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    PubMed  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  PubMed  CAS  Google Scholar 

  • Frontier S (1985) Diversity and structure in aquatic ecosystems. Oceanogr Marine Biol 23:253–312

    Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  PubMed  CAS  Google Scholar 

  • Hacine H, Rafa F, Chebhouni N, Boutaiba S, Bhatnagar T, Barratti JC, Ollivier B (2004) Biodiversity of prokaryotic microflora in E1 Golea salt lake, Algerian Sahara. J Arid Environ 58:273–284

    Article  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105:2134–2139

    Article  PubMed  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Wiegel J, Zhou J, Hedlund B, Zhang CL (2007) Molecular phylogeny of uncultivated crenarchaeota in Great Basin hot springs of moderately elevated temperature. Geomicrobiology 24:535–542

    Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Google Scholar 

  • Huber H, Huber R, Stetter KO (2006) Thermoproteales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York

    Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1999) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542

    Article  PubMed  CAS  Google Scholar 

  • Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44:430–444

    Article  PubMed  Google Scholar 

  • Kearey P, Wei H (1993) Geothermal fields of China. J Volcanol Geotherm Res 56:415–428

    Article  CAS  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  CAS  Google Scholar 

  • Kvist T, Mengewein A, Manzei S, Westermann BK, Ahring P (2005) Diversity of thermophilic and non-thermophilic crenarchaeota at 80°C. FEMS Microbiol Lett 244:61–68

    Article  PubMed  CAS  Google Scholar 

  • Kvist T, Ahring BK, Westermann P (2007) Archaeal diversity in Icelandic hot springs. FEMS Microbiol Ecol 59:71–80

    Article  PubMed  CAS  Google Scholar 

  • Lau CY, Jing HM, Jonathan CA, Stephen BP (2006) Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiol Ecol 57:80–91

    Article  CAS  Google Scholar 

  • Lau MC, Pointing JC, Aitchison SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 13:139–149

    Article  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  PubMed  CAS  Google Scholar 

  • Marteinsson VT, Hobel S, Hauksdottir CF (2001) Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242–4248

    Article  PubMed  CAS  Google Scholar 

  • Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Bizzoco RW, Ellis DG, Lipson DA, Poole AW, Levine R, Kelley ST (2007) Effects of abiotic factors on the phylogenetic diversity of bacterial communities in acidic thermal spring. Appl Environ Microbiol 73:2612–2623

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227

    Article  Google Scholar 

  • Norris TB, McDermott TR, Castenholz RW (2002) The longterm effects of UV exclusion on the microbial composition and photosynthetic competence of bacteria in hot-spring microbial mats. FEMS Microbiol Ecol 39:193–209

    Article  PubMed  CAS  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  PubMed  CAS  Google Scholar 

  • Perevalova A, Tatiana A, Kolganova V, Birkeland NK, Christa S, Bonch-Osmolovskaya EA, Alexander VL (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628

    Google Scholar 

  • Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64:167–174

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Holben W, Klenk HP (1997) Recovery of crenarchaeotal ribosomal DNA sequences from freshwater lake sediments. Appl Environ Microbiol 63:321–323

    PubMed  CAS  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nature Rev Microbiol 3:470–488

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Rleifsdottir SH, Marteinsson VT, Petursdottir SK, Holst O, Kristiansson JK (2000) Influence of sulfide and temperature on species composition community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  PubMed  CAS  Google Scholar 

  • Song ZQ, Zhi XY, Jiang HC, Zhang CL, Dong HL, Li WJ (2009) Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol J 26(4):256–263

    Google Scholar 

  • Spear JR, Walker JJ, McCollom TM (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA 102:2555–2560

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Takai K, Sako Y (1999) A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol Ecol 28:177–188

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hyperthermophilic hot spring environment in the Long Valley Caldera. Geobiology 8:1–14

    Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM, Kopczynski ED, Ruff-Roberts AL (1998) Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches—relationship between diversity and community structure. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Springer, Heidelberg, pp 33–44

  • Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H (2007) Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian central alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microbiol 73:259–270

    Article  PubMed  CAS  Google Scholar 

  • Weidler GW, Gerbl FW, Stan-Lotter H (2008) Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian central alps. Appl Environ Microbiol 74:5934–5942

    Article  PubMed  CAS  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  PubMed  CAS  Google Scholar 

  • Winker S, Woese CR (1991) A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Zhang CL, Qi Y, Huang ZY, Li WJ, Chen JQ, Song ZQ, Zhao WD, Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS, Shock EL, Hedlund BP (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74:6417–6426

    Article  PubMed  CAS  Google Scholar 

  • Zhang CL, Hedlund BP, Meng J (2010) Diversity of archaea in terrestrial hot springs and role in ammonia oxidation. In: de Bruijn FJ (ed) Handbook of molecular microbial ecology II: metagenomics in different habitats. Wiley, Hoboken (in press)

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (No. 2010CB833800), Key Project of International Cooperation (2007DFB31620), Yunnan Provincial Natural Science Foundation (Nos. 2009AC017, 2009DA002) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. CLZ was supported by the US National Science Foundation grant # MCB-0348180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, ZQ., Chen, JQ., Jiang, HC. et al. Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles 14, 287–296 (2010). https://doi.org/10.1007/s00792-010-0307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-010-0307-6

Keywords

Navigation