Skip to main content
Log in

Characterization of the cytoplasmic chaperonin containing TCP-1 from the Antarctic fish Notothenia coriiceps

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The cytoplasmic chaperonin containing TCP-1 (CCT) plays a critically important role in the folding and biogenesis of many cytoskeletal proteins, including tubulin and actin. For marine ectotherms, the chronically cold Southern Ocean (−2 to +2°C) poses energetic challenges to protein folding, both at the level of substrate proteins and with respect to the chaperonin/chaperone folding system. Here we report the partial functional and structural characterization of CCT from an Antarctic notothenioid fish, Notothenia coriiceps. We find that the mechanism of folding by the Antarctic fish CCT differed from that of mammalian CCT: (1) the former complex was able to bind denatured β-tubulin but (2) when reconstituted with rabbit Cofactor A, failed to release the protein to yield the tubulin/cofactor intermediate. Moreover, the amino acid sequences of the N. coriiceps CCT β and θ chains contained residue substitutions in the equatorial, apical, and intermediate domains that would be expected to increase the flexibility of the subunits, thus facilitating function of the chaperonin in an energy poor environment. Our work contributes to the growing realization that protein function in cold-adapted organisms reflects a delicate balance between the necessity of structural flexibility for catalytic activity and the concomitant hazard of cold-induced denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CCT:

Cytoplasmic chaperonin containing tcp-1

TCP1:

Tcomplex protein 1

CofA:

Cofactor A

MES:

2-Morpholinoethanesulfonic acid, monohydrate

EGTA:

Ethylene glycol bis(2-aminoethyl ether)-N,N,NN′-tetraacetic acid

DTT:

Dithiothreitol

SDS:

Sodium dodecyl sulfate

PAGE:

Polyacrylamide gel electrophoresis

EST:

Expressed sequence tags

References

  • Alimenti C, Ortenzi C, Carratore V, Luporini P (2003) Structural characterization of En-1, a cold-adapted protein pheromone isolated from the Antarctic ciliate Euplotes nobilii. Biochimica Biophysica Acta 1621:17–21

    CAS  Google Scholar 

  • Billger M, Wallin M, Williams RC Jr, Detrich HW III (1994) Dynamic instability of microtubules from cold-living fishes. Cell Motil Cytoskeleton 28:327–332

    Article  PubMed  CAS  Google Scholar 

  • Detrich HW, Parker SK, Williams RC, Nogales E, Downing KH (2000) Cold adaptation of microtubule assembly and dynamics: structural interpretation of primary Sequence changes present in the α- and β-tubulins of Antarctic fishes. J. Biol Che. 275:37038–37048

    Article  CAS  Google Scholar 

  • DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic Map Folio Series, Folio 15. American Geographical Society, New York, pp 1–10

    Google Scholar 

  • Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138

    Article  PubMed  CAS  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San Diego, p 322

    Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Procl Natl Acad Sci USA 95:11476–11481

    Article  CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl FU (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11:4767–4778

    PubMed  CAS  Google Scholar 

  • Gao Y, Thomas JO, Chow RL, Lee GH, Cowan NJ (1992) A cytoplasmic chaperonin that catalyzes beta actin folding. Cell 69:1044–1050

    Article  Google Scholar 

  • Gao Y, Vainberg IE, Chow RL, Cowan NJ (1993) Two cofactors and cytoplasmic chaperonin are required for the folding of alpha- and beta-tubulin. Mol Cell Biol 13:2488–2485

    Google Scholar 

  • Gao Y, Melki R, Walden PD, Lewis SA, Ampe C, Rommelaere H, Vandekerckhove J, Cowan NJ (1994) A novel cochaperonin that modulates the ATPase activity of cytoplasmic chaperonin J Cell Biol 125:989–996

    Article  PubMed  CAS  Google Scholar 

  • Gebauer M, Melki R, Gehring U (1998) The chaperone cofactor Hop/p60 interacts with the cytosolyc chaperonin-containing TCP-1 and affects its nucleotide exchange and protein folding activities. J Biol Chem 273:29475–29480

    Article  PubMed  CAS  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha and gamma-tubulin. EMBO J 17:952–966

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  • Haschemeyer AEV (1983) A comparative study of protein synthesis in nototheniids and icefish at Palmer Station, Antarctica. Comp Biochem Physiol B 76:541–543

    Article  PubMed  CAS  Google Scholar 

  • Hennig L (1999) WinGene/WinPep: user-friendly software for the analysis of aminoacid sequences. BioTechniques 26:1170–1172

    PubMed  CAS  Google Scholar 

  • Kubota H, Hynes G, Willison K (1995) Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem 230:3–16

    Article  PubMed  CAS  Google Scholar 

  • Kusmierczyk AR, Martin J (2001) Chaperonins-keeping a lid on folding proteins. FEBS Lett 505:343–347

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680–685

    Article  Google Scholar 

  • Llorca OE, McCormack A, Hynes G, Grantham J, Cordell J, Carrascosa JL, Willison KR, Fernandez JJ, Valpuesta JM (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 412:693–696

    Google Scholar 

  • Llorca O, Martin-Benito J, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM (2000) Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. EMBO J. 15:5971–5979

    Article  Google Scholar 

  • Llorca O, Martin-Benito J, Ritco-Vonsovici M, Grantham J, Hynes GM, Willison KR, Carrascosa JL, Valpuesta JM (2001a) Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J 20:4165–4175

    Article  Google Scholar 

  • Llorca O, Martin-Benito J, Gomez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM (2001b) Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 135:205–218

    Article  CAS  Google Scholar 

  • Marsh AG, Maxson RE Jr, Manahan DT (2001) High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos. Science 291:1950–1952

    Article  PubMed  CAS  Google Scholar 

  • Martin-Benito J, Bertrand S, Hu T, Ludtke PJ, McLaughlin JN, Willardson BM, Carrascosa JL, Valpuesta JM (2004) Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein. Proc Natl Acad Sci USA 101(50):17410–17745

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin JN, Thulin CD, Hart SJ, Resing KA, Ahn NG, Willardson BM (2002) Regulatory interaction of phosducin-like protein with the cytosolic chaperonin complex. Proc Natl Acad Sci USA 99(12):7962–7967

    Article  PubMed  CAS  Google Scholar 

  • Melki R (2001) Nucleotide-dependent conformational changes of the chaperonin containing tcp-1. J Struct Biol 135:170–175

    Article  PubMed  CAS  Google Scholar 

  • Melki R, Cowan NJ (1994) Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol. 14:2895–2904

    PubMed  CAS  Google Scholar 

  • Melki R, Carlier MF, Pantaloni D (1990) Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly. Biochemistry 29:8921–8932

    Article  PubMed  CAS  Google Scholar 

  • Melki R, Rommelaere H, Leguy R, Vandekerckhove J, Ampe C (1996) Cofactor A is a molecular chaperone required for beta-tubulin folding: functional and structural characterization. Biochemistry 35:10432–10445

    Google Scholar 

  • Melki R, Batelier G, Soulie S, Williams Jr RC (1997) Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. Biochemistry 36:5817–5826

    Article  PubMed  CAS  Google Scholar 

  • NRC (National Research Council) (2003) Frontiers in polar biology in the genomic era. National Academy Press, Washington

    Google Scholar 

  • Pappenberger G, Wilsher JA, Roe SM, Counsell DJ, Willison KR, Pearl LH (2002) Crystal structure of the CCTgamma apical domain: implications for substrate binding to the eukaryotic cytosolic chaperonin. J Mol. Biol. 318:1367–1379

    Article  PubMed  CAS  Google Scholar 

  • Peck LS, Clark MS, Clarke A, Cockell CS, Convey P, Detrich HW III, Fraser KPP, Johnston IA, Methe BA, Murray AE, Römisch K, Rogers AD (2004) Polar Biol 28:351–365

    Article  Google Scholar 

  • Peitsch MC (1995) Protein modeling by E-mail. Biotechnology 13:658–660

    Article  CAS  Google Scholar 

  • Place SP, Hofmann GE (2005) Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Pol Biol 28:261–267

    Article  Google Scholar 

  • Place SP, Zippay ML, Hofmann GE (2004) Comparison of Hsc70 orthologues from polar and temperate notothenioid fishes: differences in the prevention of aggregation and refolding of denatured proteins Am. J Physiol Regul Integr Comp Physiol 287:R429–R436

    CAS  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    PubMed  CAS  Google Scholar 

  • Pucciarelli S, Ballarini P, Miceli C (1997) Cold-adapted microtubules: characterization of tubulin posttranslational modifications in the Antarctic ciliate Euplotes focardii. Cell Motil Cytoskeleton 38:329–341

    Article  PubMed  CAS  Google Scholar 

  • Pucciarelli S, Miceli C, Melki R (2002) Heterologous expression and folding analysis of a beta-tubulin isotype from the Antarctic ciliate Euplotes focardii. Eur J Biochem 269:6271–6277

    Article  PubMed  CAS  Google Scholar 

  • Pucciarelli S, Marziale F, Di Giuseppe G, Barchetta S, Miceli C (2005) Ribosomal cold-adaptation: characterization of the genes encoding the acidic ribosomal P0 and P2 proteins from the Antarctic ciliate Euplotes focardii. Gene 360(2):103–110

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell. 103(4):621–632

    Article  PubMed  CAS  Google Scholar 

  • Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598–604

    Article  PubMed  CAS  Google Scholar 

  • Stafford WF III (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem. 203:295–301

    Article  PubMed  CAS  Google Scholar 

  • Stirling PC, Cuellar J, Alfaro GA, El Khadali F, Beh CT, Valpuesta JM, Melki R, Leroux MR (2006) PhLP3 modulates CCT-mediated actin and tubulin folding via ternary complexes with substrates. J Biol Chem 281(11):7012–7021

    Article  PubMed  CAS  Google Scholar 

  • Swezey RR, Somero GN (1982) Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry 21:4496–4503

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Bhamidipati A, Cowan NJ, Lewis SA (1999) Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the α/β tubulin heterodimer. J Biol Chem 274:24154–24158

    Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

    Article  PubMed  CAS  Google Scholar 

  • Valpuesta JM, Martin-Benito J, Gomez-Puertas P, Carrascosa JL, Willison KR (2002) Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT FEBS Lett. 529:11–16

    Article  PubMed  CAS  Google Scholar 

  • Viitanen PV, Lorimer GH, Seetharam R, Gupta RS, Oppenheim J, Thomas JO, Cowan NJ (1992) Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring J. Biol Chem 267:695–698

    CAS  Google Scholar 

  • Wintrode PL, Miyazaki K, Arnold FH (2000) Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution J. Biol Chem 275:31635–31640

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge with gratitude the excellent logistic support provided to our Antarctic field research program, performed at Palmer Station and on the seas of the Palmer Archipelago, by the staff of the Office of Polar Programs of the National Science Foundation, by the personnel of Antarctic Support Associates and Raytheon Polar Services Company, and by the captain and crew of the R/V Laurence M. Gould. We thank Patricia Singer (University of Maine DNA Sequencing Facility) for her excellent performance of the automated DNA sequencing. This work was supported by National Science Foundation grants OPP-9815381, OPP-0089451, OPP-0336932, and the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Pucciarelli.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucciarelli, S., Parker, S.K., Detrich, H.W. et al. Characterization of the cytoplasmic chaperonin containing TCP-1 from the Antarctic fish Notothenia coriiceps . Extremophiles 10, 537–549 (2006). https://doi.org/10.1007/s00792-006-0528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0528-x

Keywords

Navigation