Skip to main content
Log in

Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The modular Xylanase XynA from Thermotoga maritima consists of five domains (A1-A2-B-C1-C2). Two similar N-terminal domains (A1-A2-) are family 22 carbohydrate-binding modules (CBMs), followed by the catalytic domain (-B-) belonging to glycoside hydrolase family 10, and the C-terminal domains (-C1-C2), which are members of family 9 of CBMs. The gradual deletion of the non-catalytic domains resulted in deletion derivatives (XynAΔC; XynAΔA1C and XynAΔNC) with increased maximum activities (V max) at 75°C, pH 6.2. Furthermore, these deletions led to a shift of the optimal NaCl concentration for xylan hydrolysis from 0.25 (XynA) to 0.5 M (XynAΔNC). In the presence of the family 22 CBMs, the catalytic domain retained more activity in the acidic range of the pH spectrum than without these domains. In addition to the deletion derivatives of XynA, the N-terminal domains A1 and A2 were produced recombinantly, purified, and investigated in binding studies. For soluble xylan preparations, linear β-1,4-glucans and mixed-linkage β-1,3-1,4-glucans, only the A2 domain mediated binding, not the A1 domain, in accordance with previous observations. The XynA deletion enzymes lacking the C domains displayed low affinity also to hydroxyethylcellulose and carboxymethylcellulose. With insoluble oat spelt xylan and birchwood xylan as the binding substrates, the highest affinity was observed with XynAΔC and the lowest affinity with XynAΔNC. Although the domain A1 did not bind to soluble xylan preparations, the insoluble oat spelt xylan-binding data suggest that this domain does play a role in substrate binding in that it improves the binding to insoluble xylans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali MK, Hayashi H, Karita S, Goto M, Kimura T, Sakka K, Ohmiya K (2001) Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci Biotechnol Biochem 65:41–47

    Article  PubMed  CAS  Google Scholar 

  • Ali E, Zhao G, Sakka M, Kimura T, Ohmiya K, Sakka K (2005) Functions of Family-22 Carbohydrate-binding Module in Clostridium thermocellum Xyn10C. Biosci Biotechnol Biochem 69:160–165

    Article  PubMed  CAS  Google Scholar 

  • Araki R, Ali MK, Sakka M, Kimura T, Sakka K, Ohmiya K (2004) Essential role of the family-22 carbohydrate-binding modules for β-1, 3-1,4-glucanase activity of Clostridium stercorarium Xyn10B. FEBS Lett 561:155–158

    Article  PubMed  CAS  Google Scholar 

  • Black GW, Rixon JE, Clarke JH, Hazlewood GP, Theodorou MK, Morris P, Gilbert HJ (1996) Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J 319:515–520

    PubMed  CAS  Google Scholar 

  • Black GW, Rixon JE, Clarke JH, Hazlewood GP, Ferreira LMA, Bolam DN, Gilbert HJ (1997) Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol 57:59–69

    Article  PubMed  CAS  Google Scholar 

  • Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP, Gilbert HJ (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331:775–781

    PubMed  CAS  Google Scholar 

  • Boraston AB, Kwan E, Chiu P, Warren RAJ, Kilburn DG (2003) Recognition and hydrolysis of noncrystalline cellulose. J Biol Chem 278:6120–6127

    Article  PubMed  CAS  Google Scholar 

  • Boraston AB, McLean BW, Kormos JM, Alam M, Gilkes NR, Haynes CA, Tomme P, Kilburn DG, Warren RAJ (1999) Carbohydrate binding modules: diversity of structure and function. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 202–211

    Google Scholar 

  • Charnock SJ, Bolam DN,Turkenburg JP, Gilbert HJ, Ferreira LM, Davies GJ, Fontes CM (2000) The X6 thermostabilizing domain of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39:5013–5021

    Article  PubMed  CAS  Google Scholar 

  • Chhabra SR, Kelly RM (2002) Biochemical characterization of Thermotoga maritima endoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS Lett 531:375–380

    Article  PubMed  CAS  Google Scholar 

  • Clarke JH, Davidson K, Gilbert HJ, Fontes CMGA, Hazlewood GP (1996) A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria. FEMS Microbiol Lett 139:27–35

    Article  PubMed  CAS  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    PubMed  CAS  Google Scholar 

  • Decelle B, Tsang A, Storm RK (2004) Cloning, functional expression and characterisation of three Phanerochaete chrysosporium endo-1,4-β-xylanases. Curr Genet 46:166–175

    Article  PubMed  CAS  Google Scholar 

  • Devillard E, Bera-Maillet C, Flint HJ, Scott KP, Newbold CJ, Wallace RJ, Jounany JP, Forano E (2003) Characterization of XYN10B, a modular xylanase from the ruminl protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose. Biochem J 373:495–503

    Article  PubMed  CAS  Google Scholar 

  • Dias FMV, Goyal A, Gilbert HJ, Prates JAM, Ferreira LMA, Fontes CMGA (2004) The N-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium thermocellum is not a thermostabilizing domain. FEMS Microbiol Lett 238:71–78

    PubMed  CAS  Google Scholar 

  • Fontes CMGA, Hazlewood GP, Morag E, Hall J, Hirst BA, Gilbert HJ (1995) Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J 307:151–158

    PubMed  CAS  Google Scholar 

  • Gilbert HJ, Bolam DN, Szabo L, Xie H, Williamson MP, Simpson PJ, Jamal S, Boraston AB, Kilburn DG, Warren RAJ (2002) An update on carbohydrate binding modules. In: Terri TT, Svensson B, Gilbert HJ, Feizi T (eds) Carbohydrate bioengineering interdisciplinay approches. The Royal Society of Chemistry, Cambridge, pp 89–98

    Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315

    PubMed  CAS  Google Scholar 

  • Gill J, Rixon JE, Bolam DN, McQueen-Mason S, Simpson PJ, Williamson MP, Hazlewood GP, Gilbert HJ (1999) Type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem J 342:473–480

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Jung KH, Pack MY (2000) Molecular characterization of xynX, a gene encoding a multidomain xylanase with a thermostabilizing domain from Clostridium thermocellum. Appl Microbiol Biotechnol 54:521–527

    Article  PubMed  CAS  Google Scholar 

  • Kittur FS, Mangala SL, Abu Rus’d A, Kitaoka M, Tsujibo H, Hayashi K (2003) Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett 549:147–151

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-E, Lowe SE, Henrissat B, Zeikus JG (1993) Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol 175:5890–5898

    PubMed  CAS  Google Scholar 

  • Liebl W, Feil R, Gabelsberger J, Kellermann J, Schleifer KH (1992) Purification and characterization of a novel thermostable 4-α-glucanotransferase of Thermotoga maritima cloned in Escheerichia coli. Eur J Biochem 207:81–88

    Article  PubMed  CAS  Google Scholar 

  • Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57:15–28

    Article  CAS  Google Scholar 

  • Mangala SL, Kittur FS, Nishimoto M, Sakka K, Ohmiya K, Kitaoka M, Hayashi K (2003) Fusion of family VI cellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan. J Mol Catal B Enzym 21:221–230

    Article  CAS  Google Scholar 

  • Meissner K, Wassenberg D, Liebl W (2000) The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage β-1,3/β-1,4-glucan. Mol Microbiol 36:898–912

    Article  PubMed  CAS  Google Scholar 

  • Millward-Sadler SJ, Poole DM, Henrissat B, Hazlewood GP, Clarke JH, Gilbert HJ (1994) Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol Microbiol 11:375–382

    PubMed  CAS  Google Scholar 

  • Notenboom V, Boraston AB, Kilburn DG, Rose DR (2001) Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry 40:6248–6256

    Article  PubMed  CAS  Google Scholar 

  • Notenboom V, Boraston AB, Williams SJ, Kilburn DG, Rose DR (2002) High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10A with bound substrates reveal a novel mode of xylan binding. Biochemistry 41:4246–4254

    Article  PubMed  CAS  Google Scholar 

  • Ruile P, Winterhalter C, Liebl W (1997) Isolation and analysis of a gene encoding α-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan. Mol Microbiol. 23:2676–2279

    Article  Google Scholar 

  • Scharpf M, Connelly GP, Lee GM, Boraston AB, Warren RA, McIntosh LP (2002) Site-specific characterization of the association of xylooligosaccharides with the CBM13 lectin-like xylan binding domain from Streptomyces lividans xylanase 10A by NMR spectroscopy. Biochemistry 41:4255–4263

    Article  PubMed  CAS  Google Scholar 

  • Srisodsuk M, Lethio J, Linder M, Margolles-Clark E, Reinikainen T, Teeri TT (1997) Trichoderma reesei cellobiohydrolase disrupts the structure of starch. FEBS Lett 447:58–60

    Google Scholar 

  • Studier FW, Moffat BA (1986) Use of bacteriophage T7 RNA polymerase to directly selective high expression of cloned genes. J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  • Sunna A, Gibbs MD, Bergquist PL (2000) A novel thermostable multidomain 1,4-β-xylanase from Caldibacillus cellulovorans and effect of its xylan-binding domain on enzyme activity. Microbiology 146:2947–2955

    PubMed  CAS  Google Scholar 

  • Sunna A, Gibbs MD, Bergquist PL (2001) Identification of novel beta-mannan- and beta-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochem J 356:791–798

    Article  PubMed  CAS  Google Scholar 

  • Tomme P, Warren RAJ, Miller RC Jr, Kilburn DG, Gilkes NR (1995) Cellulose-binding domains: classification and properties. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates. American chemical society symposium series 618. American Chemical Society Press, San Diego, CA, pp 142–163

    Google Scholar 

  • Warren RAJ (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    Article  PubMed  CAS  Google Scholar 

  • Wassenberg D, Schurig H, Liebl W, Jaenicke R (1997) Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulosebinding domain. Protein Sci 6:1718–1726

    Article  PubMed  CAS  Google Scholar 

  • Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W (1995) Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431–444

    PubMed  CAS  Google Scholar 

  • Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815

    PubMed  CAS  Google Scholar 

  • Xie H, Gilbert HJ, Charnock SJ, Davies GJ, Williamson MP, Simpson PJ, Raghotaa S, Fontes CMGA, Dias FMV, Ferrera LMA, Bolam DN (2001) Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry 40:9167–9176

    Article  PubMed  CAS  Google Scholar 

  • Yanish-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–109

    Article  PubMed  Google Scholar 

  • Zverlov V, Piotukh K, Dakhova O, Velikodvorskaya G, Borris R (1996) The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol 45:245–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Anne Vor and Ute Ludwig for skilful technical assistance. Financial support by the Deutsche Forschungsgemeinschaft (Li 398/7) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Liebl.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleine, J., Liebl, W. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima . Extremophiles 10, 373–381 (2006). https://doi.org/10.1007/s00792-006-0509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0509-0

Keywords

Navigation