Skip to main content
Log in

An error-resilient redundant subspace correction method

  • Published:
Computing and Visualization in Science

Abstract

Due to increasing complexity of supercomputers, hard and soft errors are causing more and more problems in high-performance scientific and engineering computation. In order to improve reliability (increase the mean time to failure) of computing systems, a lot of efforts have been devoted to developing techniques to forecast, prevent, and recover from errors at different levels, including architecture, application, and algorithm. In this paper, we focus on algorithmic error resilient iterative solvers and introduce a redundant subspace correction method. Using a general framework of redundant subspace corrections, we construct iterative methods, which have the following properties: (1) maintain convergence when error occurs assuming it is detectable; (2) introduce low computational overhead when no error occurs; (3) require only small amount of point-to-point communication compared to traditional methods and maintain good load balance; (4) improve the mean time to failure. Preliminary numerical experiments demonstrate the efficiency and effectiveness of the new subspace correction method. For simplicity, the main ideas of the proposed framework were demonstrated using the Schwarz methods without a coarse space, which do not scale well in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The y-axis is processing units and the x-axis is time. The solid bars stand for computational work and springs stand for inter-process communication.

References

  1. Abts, D., Thompson, J., Schwoerer, G.: Architectural Support for Mitigating Dram Soft Errors in Large-Scale Supercomputers. Tech. rep. (2006)

  2. Bjorstad, P.E., Skogen, M.: Domain decomposition algorithms of schwarz type, designed for massively parallel computers. In: 5th International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia, pp. 362–375 (1992)

  3. Boley, D.L., Brent, R.P., Golub, G.H., Luk, F.T.: Algorithmic fault tolerance using the lanczos method. SIAM J. Matrix Anal. Appl. 13(1), 312–332 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bronevetsky, G., de Supinski, B.R.: Soft error vulnerability of iterative linear algebra methods. In: Proceedings of the 22nd Annual International Conference on Supercomputing, pp. 155–164 (2008)

  6. Chen, Z., Dongarra, J.: Algorithm-based fault tolerance for fail-stop failures. IEEE Trans. Parallel Distrib. Syst. 19(12), 1628–1641 (2008)

    Article  Google Scholar 

  7. Deng, Y.: Applied Parallel Computing. World Scientific, Singapore (2013)

    MATH  Google Scholar 

  8. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai, D., Berthou, J.Y., Boku, T., Braunschweig, B., Cappello, F., Chapman, B.: Choudhary, a., Dosanjh, S., Dunning, T., Fiore, S., Geist, a., Gropp, B., Harrison, R., Hereld, M., Heroux, M., Hoisie, a., Hotta, K., Ishikawa, Y., Johnson, F., Kale, S., Kenway, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky, a., Lippert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse, P., Mohr, B., Mueller, M.S., Nagel, W.E., Nakashima, H., Papka, M.E., Reed, D., Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling, T., Stevens, R., Streitz, F., Sugar, B., Sumimoto, S., Tang, W., Taylor, J., Thakur, R., Trefethen, a., Valero, M., van der Steen, a., Vetter, J., Williams, P., Wisniewski, R., Yelick, K.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011). doi:10.1177/1094342010391989

  9. Dryja, M., Widlund, O.: Some domain decomposition algorithms for elliptic problems. In: Hayes, L., Kincaid, D. (eds.) Iterative Methods for Large Linear Systems, pp. 273–291. Academic Press, San Diego (1989)

    Google Scholar 

  10. Dryja, M., Widlund, O.B.: Additive schwarz methods for elliptic finite element problems in three dimensions. In: Fifth Conference on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA (1992)

  11. Du, P., Luszczek, P., Dongarra, J.: High performance dense linear system solver with resilience to multiple soft errors. In: International Conference on Cluster Computing, pp. 272–280 (2011)

  12. Du, P., Luszczek, P., Dongarra, J.: High performance dense linear system solver with resilience to multiple soft errors. Procedia Comput. Sci. 9, 216–225 (2012). doi:10.1016/j.procs.2012.04.023

    Article  Google Scholar 

  13. Gropp, W.D.: Parallel computing and domain decomposition. In: Fifth Conference on Domain Decomposition Methods for Partial Differential Equations, pp. 349–361 (1992)

  14. Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment, Computational Mathematics Series. Springer, Berlin (1992)

    Book  Google Scholar 

  15. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, vol. 95. Springer, New York (1994)

    Book  MATH  Google Scholar 

  16. Hoemmen, M., Heroux, M.A.: Fault-tolerant iterative methods via selective reliability. In: Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC) (2011)

  17. Huang, K.h., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE Trans. Comput. c(6), 518–528 (1984)

  18. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Keyes, D.E.: Exaflop/s: the why and the how. Comptes Rendus Mécanique 339(2–3), 70–77 (2011). doi:10.1016/j.crme.2010.11.002

    Article  MATH  Google Scholar 

  20. Kikuchi, N.: Finite Element Methods in Mechanics. Cambridge University Press, Cambridge (1986)

    Book  MATH  Google Scholar 

  21. Langou, J., Chen, Z., Bosilca, G., Dongarra, J.: Recovery patterns for iterative methods in a parallel unstable environment. SIAM J. Sci. Comput. 30(1), 102–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laprie, J.: Dependable computing: Concepts, limits, challenges. In: The 25th IEEE International Symposium on Fault-Tolerant Computing, pp. 42–54 (1995)

  23. Liu, Y., Nassar, R., Leangsuksun, C.B., Naksinehaboon, N., Paun, M., Scott, S.L.: An optimal checkpoint/restart model for a large scale high performance computing system. In: 2008 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–9 (2008). doi:10.1109/IPDPS.2008.4536279

  24. Luk, F., Park, H.: An analysis of algorithm-based fault tolerance techniques. In: 30th Annual Technical Symposium on International Society for Optics and Photonics, pp. 172–184 (1986)

  25. Malkowski, K., Raghavan, P., Kandemir, M.: Analyzing the soft error resilience of linear solvers on multicore multiprocessors. In: 2010 IEEE International Symposium on Parallel & Distributed Processing, pp. 1–12 (2010). doi:10.1109/IPDPS.2010.5470411

  26. Michalak, S., Harris, K., Hengartner, N., Takala, B., Wender, S.: Predicting the number of fatal soft errors in Los Alamos national laboratory’s ASC Q supercomputer. IEEE Trans. Device Mater. Reliab. 5(3), 329–335 (2005). doi:10.1109/TDMR.2005.855685

    Article  Google Scholar 

  27. Miskov-Zivanov, N., Marculescu, D.: Soft error rate analysis for sequential circuits. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1436–1441 (2007)

  28. Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (2003)

    Book  Google Scholar 

  29. Mukherjee, S., Emer, J., Reinhardt, S.K.: The soft error problem: An architectural perspective. In: Proc. 11th Int’l Symp. on High-Performance Computer Architecture (HPCA) (2005)

  30. PHG (Parallel Hierarchical Grid). http://lsec.cc.ac.cn/phg/

  31. Plank, J.S., Li, K., Puening, M.A.: Diskless checkpointing. IEEE Trans. Parallel Distrib. Syst. 9(10), 972–986 (1998)

    Article  Google Scholar 

  32. Reddi, V.: Hardware and software co-design for robust and resilient execution. In: 2012 International Conference on Collaboration Technologies and Systems, p. 380 (2012)

  33. Roy-Chowdhury, A., Banerjee, P.: A fault-tolerant parallel algorithm for iterative solution of the laplace equation. In: International Conference on Parallel Processing, vol. 3, pp. 133–140 (1993)

  34. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (1996). doi:10.1109/MCSE.1996.1231631

  35. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Characterizing the impact of soft errors on iterative methods in scientific computing. In: Proceedings of the International Conference on Supercomputing, pp. 152–161 (2011)

  36. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Fault tolerant preconditioned conjugate gradient for sparse linear system solution. In: Proceedings of the 26th ACM International Conference on Supercomputing, pp. 69–78. ACM, New York (2012)

  37. Smith, B.F.: A parallel implementation of an iterative substructuring algorithm for problems in three dimensions. SIAM J. Sci. Comput. 14(2), 406–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stoyanov, M.K., Webster, C.G.: Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware Faults. Tech. rep., Oak Ridge National Laboratory (ORNL) (2013)

  39. Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  40. Treaster, M.: A Survey of Fault-tolerance and Fault-recovery techniques in Parallel Systems. Tech. rep., ACM Computing Research Repository (2005)

  41. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15(3), 573–597 (2002). doi:10.1090/S0894-0347-02-00398-3

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, W.: Computing cache vulnerability to transient errors and its implication. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 427–435 (2005)

Download references

Acknowledgements

Cui and Zhang are partially supported by National Key Research and Development Program 2016YFB0201304, by China NSF Grants 91430215 and 91530323, and by National Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences (NCMIS). Xu is partially supported by NSF DMS-0915153 and DOE DE-SC0006903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Cui.

Additional information

Communicated by Gabriel Wittum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, T., Xu, J. & Zhang, CS. An error-resilient redundant subspace correction method. Comput. Visual Sci. 18, 65–77 (2017). https://doi.org/10.1007/s00791-016-0270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-016-0270-6

Keywords

Navigation