Skip to main content
Log in

AMDiS: adaptive multidimensional simulations

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

We describe how modular software design and well proven object oriented design patterns can help to implement a flexible software package for the efficient solution of partial differential equations. Today not only efficiency in the numerical solution is of utmost importance for practical use, efficiency in problem setup and interpretation of numerical results is of importance if modeling and computing comes closer and closer together. In order to demonstrate the possibilities of the software, we apply the tool to several non-standard problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M. and Oden J. (2000). A posteriori error estimation in finite element analysis. Wiley, New York

    MATH  Google Scholar 

  2. Banas K. (2005). On a modular architecture for finite element systems. i sequential codes. Comput. Vis. Sci. 8: 35–47

    Article  Google Scholar 

  3. Bänsch E., Haußer F., Lakkis O., Li B. and Voigt A. (2004). Finite element method for epitaxial growth with attachment-etachment kinetics. J. Comput. Phys. 194: 409–434

    Article  MATH  MathSciNet  Google Scholar 

  4. Bänsch E., Morin P. and Nochetto R. (2005). A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203: 321–343

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrett J. and Blowey J. (1999). Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math. Comp. 68: 487–517

    Article  MATH  MathSciNet  Google Scholar 

  6. Bastian, P., Droske, M., Engwer, C., Klöfkorn, R., Neubauer, T., Ohlberger, M., Rumpf, M.: Towards a Unified Framework for Scientific Computing. LNCSE. Springer, Berlin Heidelberg New York (2005, Accepted for publication)

  7. Bertalmio M., Cheng L.T., Osher S. and Sapiro G. (2001). Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174: 759–780

    Article  MATH  MathSciNet  Google Scholar 

  8. Bornemann F. and Rasch C. (2006). Finite-element discretization of static Hamilton–Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9: 57–69

    Article  MathSciNet  Google Scholar 

  9. Clarenz U., Haußer F., Rumpf M., Voigt A., Weickard U. (2006) On level set formulations for anisotropic mean curvature flow and surface diffusion. In: Multiscale Modeling in epitaxial growth, ISNM, vol. 149, pp. 227–237. Birkhäuser, Boston (2005)

  10. Feng X. and Prohl A. (2005). Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw problem. Interf. Free Bound. 7(1): 1–28

    MATH  MathSciNet  Google Scholar 

  11. Fried E. and Gurtin M. (2004). A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy. Adv. Appl. Mech. 40: 1–177

    Article  Google Scholar 

  12. Fried M. (2004). A level set based finite element algorithm for the simulation of dendritic growth. Comput. Vis. Sci. 7(2): 97–110

    Article  MATH  MathSciNet  Google Scholar 

  13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading (1996)

  14. Hackbusch W. and Sauter S. (1997). Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75: 447–472

    Article  MATH  MathSciNet  Google Scholar 

  15. Halpern D., Jensen O. and Grotberg J. (1998). A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85: 333–352

    Google Scholar 

  16. Haußer, F., Voigt A. (2005). Facet formation and coarsening modeled by a geometric evolution law for epitaxial growth. J. Cryst. Growth 275: e47–e51

    Article  Google Scholar 

  17. Haußer, F., Voigt, A.: Anisotropic surface diffusion, a numerical approach by parametric finite elements. J. Sci. Comput. (2007) DOI 10.1007/s10915-005-9064-6

  18. Kim J., Kang K. and Lowengrub J. (2004). Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2): 511–543

    Article  MATH  MathSciNet  Google Scholar 

  19. Memoli F., Sapiro G. and Thompson P. (2004). Implicit brain imaging. Human Brain Mapping 23: 179–188

    Google Scholar 

  20. Myers T. and Charpin J. (2004). A mathematical model for atmosheric ice accretion and water flow on a cold surface. Int. J. Heat Mass Trans. 47(25): 5483–5500

    Article  MATH  Google Scholar 

  21. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin Heidelberg New York (2003)

  22. Rätz, A., Ribalta, A., Voigt, A.: Surface evolution of elastically stressed films under deposition. J. Comput. Phys. 214, 187–208 (2006)

    Google Scholar 

  23. Sapiro, G.: Geometric partial differential equations and image analysis. Cambridge University Press, Cambridge (2001)

  24. Schmidt, A.: A multi-mesh finite element method for phase-field simulations. In: Interface and Transport Dynamics, LNCSE, vol. 32, pp. 209–217 (2003)

  25. Schmidt, A., Siebert, K.: Design of Adaptive Finite Element Software, LNCSE, vol. 42. Springer, Berlin Heidelberg New York (2005)

  26. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

  27. Smereka P. (2003). A level set based finite element algorithm for the simulation of dendritic growth. J. Sci. Comput. 19: 439–456

    Article  MATH  MathSciNet  Google Scholar 

  28. Stöcker C., Vey S. and Voigt A. (2005). AMDiS-adaptive multidimensional simulation: composite finite elements and signed distance functions. WSEAS Trans. Circ. Syst. 4: 111–116

    Google Scholar 

  29. Turk, G., Levoy, M.: Zipped polygon meshes from range images. In: SIGGRAPH’94, pp. 311–318 (1994)

  30. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh refinement techniques. Wiley-Teubner, Chichester (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Voigt.

Additional information

Communicated by K. Mikula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vey, S., Voigt, A. AMDiS: adaptive multidimensional simulations. Comput. Visual Sci. 10, 57–67 (2007). https://doi.org/10.1007/s00791-006-0048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-006-0048-3

Keywords

Navigation