Skip to main content
Log in

Lagrange–Galerkin method for unsteady free surface water waves

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

We present a new numerical technique to approximate solutions to unsteady free surface flows modelled by the two-dimensional shallow water equations. The method we propose in this paper consists of an Eulerian–Lagrangian splitting of the equations along the characteristic curves. The Lagrangian stage of the splitting is treated by a non-oscillatory modified method of characteristics, while the Eulerian stage is approximated by an implicit time integration scheme using finite element method for spatial discretization. The combined two stages lead to a Lagrange–Galerkin method which is robust, second order accurate, and simple to implement for problems on complex geometry. Numerical results are shown for several test problems with different ranges of difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allievi A., Bermejo R. (1997): A generalized particle search-locate algorithm for arbitrary grids. J. Comp. Phys. 132, 157–166

    Article  MATH  MathSciNet  Google Scholar 

  2. Augenbaum J. (1984): A Lagrangian method for shallow water equations based on voronoi mesh: one dimensional results. J. Comp. Phys. 53, 240–265

    Article  MATH  MathSciNet  Google Scholar 

  3. Bermejo R. (1995): A Galerkin-characteristic algorithm for transport-diffusion equations. SIAM J. Numer. Anal. 32, 425–454

    Article  MATH  MathSciNet  Google Scholar 

  4. Bermejo R. (2001): Analysis of a class of quasi-monotone and conservative semi-Lagrangian advection schemes. Numer. Math. 87, 579–623

    Article  MathSciNet  Google Scholar 

  5. Bermejo R., El-Amrani M. (2003): A finite element semi- Lagrangian explicit Runge–Kutta–Chebyshev method for convection dominated reaction-diffusion problems. J. Comp. Appl. Math. 154, 27–61

    Article  MATH  MathSciNet  Google Scholar 

  6. Bermejo R., Staniforth A. (1992): The conversion of semi- Lagrangian advection schemes to quasi-monotone schemes. Mon. Weather. Rev. 120, 2622–2632

    Article  Google Scholar 

  7. Brooks A., Hughes T. (1982): Stream-line formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comp. Meth. Appl. Mech. Eng. 32, 199–259

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen J., Lobo N., Hughes C., Moshell J. (1997): Real-time fluid simulation in a dynamic virtual environment. IEEE Comput. Graph. 17, 52–61

    Article  Google Scholar 

  9. Dawson C., Proft J. (2004): Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Comp. Methods Appl. Mech. Eng. 193, 289–318

    Article  MATH  MathSciNet  Google Scholar 

  10. Donea J. (1984) : A Taylor–Galerkin method for convective transport problems. Int. J. Numer. Meth. Eng. 20, 101–119

    Article  MATH  Google Scholar 

  11. Douglas J., Russell T. (1982): Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite elements or finite differences. SIAM J. Numer. Anal. 19, 871–885

    Article  MATH  MathSciNet  Google Scholar 

  12. Douglas J., Huang C., Pereira F. (1999): The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369

    Article  MATH  MathSciNet  Google Scholar 

  13. Durran D. (1998): Numerical Method for Wave Equations for Geophysical Fluid Mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Foster N., Metaxas D. (1996): Realistic animation of liquids. Graph. Models Image Proc. 58, 3471–483

    Google Scholar 

  15. Gill A. (1982): Atmosphere-Ocean Dynamics. Academic, New York

    Google Scholar 

  16. Giraldo F. (1998): The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comp. Phys. 147, 114–146

    Article  MATH  MathSciNet  Google Scholar 

  17. Griebel M., Dornseifer T. (1995): Numerische Simulation in der Strömungsmechanik. Vieweg, Braunschweig

    Google Scholar 

  18. Haidvogel D., Beckman A. (1999): Numerical Ocean Circulation Modeling. Imperial College Press, London

    MATH  Google Scholar 

  19. Hudson, J.: numerical techniques for morphodynamic modelling. Ph.D. Thesis, University of Reading, Department of Mathematics (2001)

  20. Hughes T., Franca I., Hulbert G. (1989): A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-Squares method for advective-diffusive equations. Comp. Meth. Appl. Mech. Eng. 73, 173–189

    Article  MATH  MathSciNet  Google Scholar 

  21. Johnson K. (1997): A Moderns Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge

    Google Scholar 

  22. Kaazempur-Mofrad M., Ethier C. (2002): An efficient characteristic Galerkin scheme for the advection equation in 3D. Comp. Methods App. Mech. Eng. 191, 5345–5363

    Article  MATH  Google Scholar 

  23. Lohner R., Morgan K., Zienkiewicz O. (1984): The solution of non-linear hyperbolic equation systems by finite element method. Int. J. Numer. Meth. Fluids 4, 1043–1063

    Article  MathSciNet  Google Scholar 

  24. Morton K. (1996): Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London

    MATH  Google Scholar 

  25. Nazarov A. (1991): Mathematical modeling of a snow-powder avalanche in the frame work of the equations of two-layer shallow water. Fluid Dyn. 26, 70–75

    Article  MATH  Google Scholar 

  26. Peachey D. (1986): Modeling waves and surfaces. Comput. Graph 20, 65–74

    Google Scholar 

  27. Pedlosky J. (1987): Geophysical Fluid Dynamics. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  28. Pironneau O. (1982): On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332

    Article  MATH  MathSciNet  Google Scholar 

  29. Pudykiewicz J., Staniforth A. (1984): Some properties and comparative performance of the semi-Lagrangian method of robert in the solution of advection-diffusion equation. Atmos. Ocean 22, 283–308

    Google Scholar 

  30. Rebollo T., Domínquez A., Fernández E. (2003): A family of stable numerical solvers for the shallow water equations with source terms. Comp. Methods Appl. Mech. Eng. 192, 203–225

    Article  MATH  Google Scholar 

  31. Seaïd M.(2002): On the quasi-monotone modified method of characteristics for transport-diffusion problems with reactive sources. J. Comp. Methods Appl. Math. 2, 186–210

    MATH  Google Scholar 

  32. Seaïd M.(2002): Semi-Lagrangian integration schemes for viscous incompressible flows. J. Comp. Methods Appl. Math. 4, 392–409

    MATH  Google Scholar 

  33. Simo J., Armero F. (1994): Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and Euler equations. Comp. Methods Appl. Mech. Eng. 111, 111–154

    Article  MATH  MathSciNet  Google Scholar 

  34. Smith A., Silvester D. (1997): Implicit algorithms and their linearisation for the transient Navier–Stokes equations. IMA J. Numer. Anal. 17, 527–543

    Article  MATH  MathSciNet  Google Scholar 

  35. Staniforth A., Coté J. (1991): Semi-Lagrangian integration schemes for the atmospheric models: a review. Wea. Rev. 119, 2206–2223

    Article  Google Scholar 

  36. Stoker J. (1957): Water Waves: The Mathematical Theory with Applications. Interscience, New York

    Google Scholar 

  37. Süli E. (1988): Convergence and stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53, 459–483

    Article  MATH  MathSciNet  Google Scholar 

  38. Temperton C., Staniforth A. (1987): An efficient two-time-level Semi-Lagrangian semi-implicit integration scheme. Qt. J. Ry. Meteorol. Soc. 113, 1025–1039

    Article  Google Scholar 

  39. Thomas S., Malevsky A., esgagné M., Pellerin P. (1997): Massively parallel implementation of the mesoscale compressible community model. Parallel Comput. 23, 2143–2160

    Article  MATH  Google Scholar 

  40. Toro E. (2001): Shock-capturing methods for Free-Surface Shallow Flows. Wiley, New York

    MATH  Google Scholar 

  41. Townson J. (1991: Free-surface Hydraulics. Unwin Hyman, London)

    Google Scholar 

  42. Van der Vorst H. (1992): BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsysmmetric linear systems. SIAM J. Sci. Stat. Comp. 13, 631–644

    Article  MATH  Google Scholar 

  43. Wang Z., Shen H. (1999): Lagrangian simulation of one-dimensional dam-break flow. J. Hydraul. Eng. 125, 1217–1220

    Article  Google Scholar 

  44. Zalesak S. (1979): Fully Multidimensional flux-corrected transport algorithms for fluids. J. Comp. Phys. 31, 335–362

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhao D., Shen H., Tabios G., Lai J., Tan W. (1994): Finite- volume two-dimensional unsteady-flow model for river basins. J. Hydraul. Eng. 120, 863–883

    Article  Google Scholar 

  46. Zienkiewicz O., Ortiz P. (1995): A split-characteristic based finite element model for the shallow water equations. Int. J. Numer. Meth. Fluids 20, 1061–1080

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Seaïd.

Additional information

Communicated by G.Wittum

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seaïd, M., El-Amrani, M. Lagrange–Galerkin method for unsteady free surface water waves. Comput. Visual Sci. 9, 209–228 (2006). https://doi.org/10.1007/s00791-006-0027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-006-0027-8

Keywords

Navigation