Skip to main content
Log in

Application of the Gestalt principles to the detection of good continuations and corners in image level lines

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

In this paper, we propose an algorithm to automatically detect regular subcurves in a set of digital curves. The decision criterion is based on Helmholtz Principle introduced by Desolneux, Moisan and Morel and formulated in terms of number of false alarms. We apply our algorithm to low-level computer vision. Following Gestalt Theory, good continuation is indeed, one of the most important grouping laws entering into the early perception of objects. We check this on the level lines of images, which give a contrast invariant representation of images. The result is that most objects are good continuations. This experimentally shows that contrast invariance is a very sound hypothesis for low level vision and that objects can be detected independently of contrast. The parameters of the method may be reduced to a single one – the number of false alarms – and we can show that the detection has a very weak dependency on this number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 502–507 (2003)

    Article  Google Scholar 

  2. Alvarez, L., Morales, F.: Affine morphological multiscale analysis of corners and multiple junctions. Int. J. of Computer Vision 25(2), 95–107 (1997)

    Article  Google Scholar 

  3. Attneave, F.: Some informational aspects of visual perception. Psychological Review 61(3), 183–193 (1954)

    Article  Google Scholar 

  4. Bergen, Julesz: Textons, the fundamental elements in preattentive vision and perception of textures. Bell-Syst. Techn. J. 62(6), 1619–1645 (1983)

    Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Google Scholar 

  6. Cao, F.: Contrast invariant, parameterless detection of good continuations, corners and terminators. Technical Report PI-1487, IRISA, 2002

  7. Caselles, V., Coll, B., Morel, J.M.: A Kanizsa program. In Progress in Nonlinear Differential Equations and their Applications, Vol. 25, 1996, pp. 35–55

  8. Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. Int. J. of Computer Vision 10(2), 101–124 (1993)

    Article  Google Scholar 

  9. Desolneux, A.: Événements significatifs et applications à l’analyse d’image. PhD thesis, ENS-Cachan, 2000

  10. Desolneux, A., Moisan, L., Morel, J.M.: Maximal meaningful events and application to image analysis. Technical Report Preprint 2000-22, CMLA, ENS-Cachan, 2000

  11. Desolneux, A., Moisan, L., Morel, J.M.: Meaningful alignments. Int. J. of Computer Vision 40(1), 7–23 (2000)

    Article  MathSciNet  Google Scholar 

  12. Desolneux, A., Moisan, L., Morel, J.M.: Edge detection by Helmholtz principle. J. Math. Imag. Vision 14(3), 271–284 (2001)

    Article  Google Scholar 

  13. Desolneux, A., Moisan, L., Morel, J.M.: Partial gestalts. http://www.cmla.ens-cachan.fr. To appear in IEEE. Trans. on PAMI, 2001

  14. Desolneux, A., Moisan, L., Morel, J.M.: A grouping principle and four applications. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 508–513 (2003)

    Article  Google Scholar 

  15. Gousseau, Y., Morel, J.M.: Are natural images of bounded variation? SIAM J. of Math. Anal. 33(3), 634–648 (2001)

    MathSciNet  Google Scholar 

  16. Guichard, F., Morel, J.M.: Iterative Image Filtering. To appear, 2003

  17. Guy, G., Medioni, G.: Inferring global perceptual contours from local features. Int. J. of Computer Vision 20(1), 113–133 (1996)

    Article  Google Scholar 

  18. Harris, C.G., Stephens, M.: A combined corner and edge detector. In 4th Alvey Vision Conference, Manchester, 1988, pp. 189–192

  19. Helmholtz, H.: Handbuch der Physiologischen Optik. Allgemeine Encyklopdie der Physik, 1867

  20. Jacobs, D.W.: Robust and efficient detection of salient convex groups. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 23–37 (1996)

    Article  Google Scholar 

  21. Kanizsa, G.: Vedere e Pensare. Bologna: Il Mulino, 1991

  22. Kanizsa, G.: La Grammaire du Voir. Diderot, 1996. Original title: Grammatica del vedere. French translation from Italian

  23. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  24. Lindeberg, T., Li, M.X.: Segmentation and classification of edges using minimum description length approximation and complementary junction cues. Computer Vision and Image Understanding 67(1), 88–98 (1997)

    Article  MathSciNet  Google Scholar 

  25. Lisani, J.L., Monasse, P., Rudin, L.: Fast shape extraction and application. Preprint 16, CMLA, ENS-Cachan. Available at http://www.cmla.ens-cachan.fr, 2001

  26. Lowe, D.: Perceptual Organization and Visual Recognition. PhD thesis, Stanford University, 1984

  27. Marr, D.: Vision. N.York: W.H. and Co, 1982

  28. Monasse, P., Guichard, F.: Fast computation of a contrast invariant representation. IEEE Trans. on Image Processing 9(5), 860–872 (2000)

    Article  Google Scholar 

  29. Montanari, U.: On the optimal detection of curves in noisy pictures. Communications of the ACM 14(5), 335–345 (1971)

    Article  MathSciNet  Google Scholar 

  30. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics, XLII(4) (1989)

  31. Musé, P., Sur, F., Morel, J.M.: Recherche dans les grandes bases de formes. Technical Report 2002-02, ENS Cachan, 2002, In French

  32. Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 826–833 (1992)

    Article  Google Scholar 

  33. Pao, H., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In International Conference of Computer Vision, ICCV 99. Vol. 2, 1999, pp. 948–955

  34. Sojka, E.: A new algorithm for detecting corners in digital images. In 18th Spring Conference on Computer Graphics, 2001

  35. Wertheimer, M.: Untersuchungen zur Lehre der Gestalt, II. Psychologische Forschung 4, 301–350 (1923)

    Article  Google Scholar 

  36. Zhu, S.C.: Embedding Gestalt laws in markow random fields. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1170–1187 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Cao .

Additional information

Communicated by

K. Mikula

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao , F. Application of the Gestalt principles to the detection of good continuations and corners in image level lines. Comput. Visual Sci. 7, 3–13 (2004). https://doi.org/10.1007/s00791-004-0123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-004-0123-6

Keywords

Navigation