Skip to main content
Log in

Aberrant intrinsic hippocampal and orbitofrontal connectivity in drug-naive adolescent patients with major depressive disorder

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Alterations in resting-state functional connectivity (rsFC) of hippocampus and orbitofrontal cortex (OFC) have been highly implicated in major depressive disorder (MDD) and the researches have penetrated to the subregional level. However, relatively little is known about the intrinsic connectivity patterns of these two regions in adolescent MDD (aMDD), especially that of their functional subregions. Therefore, in the current study, we recruited 68 first-episode drug-naive aMDD patients and 43 matched typically developing controls (TDC) to characterize the alterations of whole-brain rsFC patterns in hippocampus and OFC at both regional and subregional levels in aMDD. The definition of specific functional subregions in hippocampus and OFC were based on the prior functional clustering-analysis results. Furthermore, the relationship between rsFC alterations and clinical features was also explored. Compared to TDC group, aMDD patients showed decreased connectivity of the left whole hippocampus with bilateral OFC and right inferior temporal gyrus at the regional level and increased connectivity between one of the right hippocampal subregions and right posterior insula at the subregional level. Reduced connectivity of OFC was only found in the subregion of left OFC with left anterior insula extending to lenticula in aMDD patients relative to TDC group. Our study identifies that the aberrant hippocampal and orbitofrontal rsFC was predominantly located in the insular cortex and could be summarized as an altered hippo-orbitofrontal-insular circuit in aMDD, which may be the unique features of brain network dysfunction in depression at this particular age stage. Moreover, we observed the distinct rsFC alterations in adolescent depression at the subregional level, especially the medial and lateral OFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358(1):55–68

    Article  CAS  PubMed  Google Scholar 

  2. Kessler RC, Avenevoli S, Ries Merikangas K (2001) Mood disorders in children and adolescents: an epidemiologic perspective. Biol Psychiatry 49(12):1002–1014

    Article  CAS  PubMed  Google Scholar 

  3. Thapar A et al (2012) Depression in adolescence. Lancet 379(9820):1056–1067

    Article  PubMed  PubMed Central  Google Scholar 

  4. Birmaher B et al (2007) Practice parameter for the assessment and treatment of children and adolescents with depressive disorders. J Am Acad Child Adolesc Psychiatry 46(11):1503–1526

    Article  PubMed  Google Scholar 

  5. Nardi B et al (2013) Adolescent depression: clinical features and therapeutic strategies. Eur Rev Med Pharmacol Sci 17(11):1546–1551

    CAS  PubMed  Google Scholar 

  6. Thompson AH (2008) Younger onset of depression is associated with greater suicidal intent. Soc Psychiatry Psychiatr Epidemiol 43(7):538–544

    Article  PubMed  Google Scholar 

  7. Cullen KR et al (2014) Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiat 71(10):1138–1147

    Article  Google Scholar 

  8. Lai CH (2021) Fronto-limbic neuroimaging biomarkers for diagnosis and prediction of treatment responses in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 107:110234

    Article  CAS  PubMed  Google Scholar 

  9. Seminowicz DA et al (2004) Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 22(1):409–418

    Article  CAS  PubMed  Google Scholar 

  10. Wang F, Schoenbaum G, Kahnt T (2020) Interactions between human orbitofrontal cortex and hippocampus support model-based inference. PLoS Biol 18(1):e3000578

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wikenheiser AM, Schoenbaum G (2016) Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat Rev Neurosci 17(8):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Snyder HR (2013) Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull 139(1):81–132

    Article  PubMed  Google Scholar 

  13. Rock PL et al (2014) Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med 44(10):2029–2040

    Article  CAS  PubMed  Google Scholar 

  14. Nelson EE, Guyer AE (2011) The development of the ventral prefrontal cortex and social flexibility. Dev Cogn Neurosci 1(3):233–245

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hueston CM, Cryan JF, Nolan YM (2017) Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Transl Psychiatry 7(4):e1081–e1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calabro FJ et al (2020) Development of hippocampal-prefrontal cortex interactions through adolescence. Cereb Cortex 30(3):1548–1558

    Article  PubMed  Google Scholar 

  17. Belleau EL, Treadway MT, Pizzagalli DA (2019) the impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry 85(6):443–453

    Article  PubMed  Google Scholar 

  18. Treadway MT et al (2015) Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 77(3):285–294

    Article  PubMed  Google Scholar 

  19. Barch DM et al (2019) Early childhood depression, emotion regulation, episodic memory, and hippocampal development. J Abnorm Psychol 128(1):81–95

    Article  PubMed  PubMed Central  Google Scholar 

  20. Quevedo K et al (2019) Neurofeedback and neuroplasticity of visual self-processing in depressed and healthy adolescents: a preliminary study. Dev Cogn Neurosci 40:100707

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rzepa E, Fisk J, McCabe C (2017) Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology. J Psychopharmacol 31(3):303–311

    Article  PubMed  Google Scholar 

  22. McCabe C et al (2012) Neural processing of reward and punishment in young people at increased familial risk of depression. Biol Psychiatry 72(7):588–594

    Article  PubMed  Google Scholar 

  23. Xie C et al (2021) Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms. Biol Psychiatry Cogn Neurosci Neuroimaging 6(3):259–269

    PubMed  Google Scholar 

  24. Zheng R et al (2022) Abnormal voxel-wise whole-brain functional connectivity in first-episode, drug-naive adolescents with major depression disorder. Eur Child Adolesc Psychiatry. https://doi.org/10.1007/s00787-022-01959-y

    Article  PubMed  Google Scholar 

  25. Feng R et al (2021) Family conflict associated with intrinsic hippocampal-OFC connectivity in adolescent depressive disorder. Front Psychiatry 12:797898

    Article  PubMed  Google Scholar 

  26. Cheng W et al (2016) Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain 139(Pt 12):3296–3309

    Article  PubMed  Google Scholar 

  27. Grady CL (2020) Meta-analytic and functional connectivity evidence from functional magnetic resonance imaging for an anterior to posterior gradient of function along the hippocampal axis. Hippocampus 30(5):456–471

    Article  PubMed  Google Scholar 

  28. Plachti A et al (2019) Multimodal parcellations and extensive behavioral profiling tackling the hippocampus gradient. Cereb Cortex 29(11):4595–4612

    Article  PubMed  PubMed Central  Google Scholar 

  29. Strange BA et al (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15(10):655–669

    Article  CAS  PubMed  Google Scholar 

  30. Dugre JR et al (2021) Functional connectivity abnormalities of the long-axis hippocampal subregions in schizophrenia during episodic memory. NPJ Schizophr 7(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lazarov A et al (2017) Resting-state functional connectivity of anterior and posterior hippocampus in posttraumatic stress disorder. J Psychiatr Res 94:15–22

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen AC, Etkin A (2013) Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology 38(10):1889–1898

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu L et al (2018) An approach to directly link ICA and seed-based functional connectivity: application to schizophrenia. Neuroimage 179:448–470

    Article  PubMed  Google Scholar 

  34. Villa LM et al (2020) Cognitive behavioral therapy may have a rehabilitative, not normalizing, effect on functional connectivity in adolescent depression. J Affect Disord 268:1–11

    Article  CAS  PubMed  Google Scholar 

  35. Lee J et al (2019) Resting-state functional connectivity in medication-naive adolescents with major depressive disorder. Psychiatry Res Neuroimaging 288:37–43

    Article  PubMed  Google Scholar 

  36. American Psychiatric Association A (2013) Diagnostic and statistical manual of mental disorders, 5th edn (DSM-5)

  37. Williams JB (1988) A structured interview guide for the Hamilton depression rating scale. Arch Gen Psychiatry 45(8):742–747

    Article  CAS  PubMed  Google Scholar 

  38. Yan CG et al (2016) DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14(3):339–351

    Article  PubMed  Google Scholar 

  39. Yan CG et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201

    Article  PubMed  Google Scholar 

  40. Friston KJ et al (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355

    Article  CAS  PubMed  Google Scholar 

  41. Power JD et al (2013) Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 76:439–441

    Article  PubMed  Google Scholar 

  42. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  PubMed  Google Scholar 

  43. Maldjian JA et al (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  44. Tzourio-Mazoyer N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  CAS  PubMed  Google Scholar 

  45. Kahnt T et al (2012) Connectivity-based parcellation of the human orbitofrontal cortex. J Neurosci 32(18):6240–6250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson JL et al (2015) Neurofunctional topography of the human hippocampus. Hum Brain Mapp 36(12):5018–5037

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hayasaka S, Nichols TE (2003) Validating cluster size inference: random field and permutation methods. Neuroimage 20(4):2343–2356

    Article  PubMed  Google Scholar 

  48. Woo CW, Krishnan A, Wager TD (2014) Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91:412–419

    Article  PubMed  Google Scholar 

  49. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  50. Kuehn E et al (2016) Interoceptive awareness changes the posterior insula functional connectivity profile. Brain Struct Funct 221(3):1555–1571

    Article  PubMed  Google Scholar 

  51. Peyron R, Fauchon C (2019) The posterior insular-opercular cortex: an access to the brain networks of thermosensory and nociceptive processes? Neurosci Lett 702:34–39

    Article  CAS  PubMed  Google Scholar 

  52. Catani M, Dell’acqua F, Thiebaut de Schotten M (2013) A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 37(8):1724–1737

    Article  PubMed  Google Scholar 

  53. Suarez-Jimenez B et al (2018) Linked networks for learning and expressing location-specific threat. Proc Natl Acad Sci USA 115(5):e1032–e1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lemke H et al (2022) The course of disease in major depressive disorder is associated with altered activity of the limbic system during negative emotion processing. Biol Psychiatry Cogn Neurosci Neuroimaging 7(3):323–332

    PubMed  Google Scholar 

  55. Yin Y et al (2015) The BDNF Val66Met polymorphism, resting-state hippocampal functional connectivity and cognitive deficits in acute late-onset depression. J Affect Disord 183:22–30

    Article  CAS  PubMed  Google Scholar 

  56. Hao ZY et al (2020) Abnormal resting-state functional connectivity of hippocampal subfields in patients with major depressive disorder. BMC Psychiatry 20(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tahmasian M et al (2013) Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in major depressive disorder. Front Hum Neurosci 7:639

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tang Q et al (2022) Shared and distinct changes in local dynamic functional connectivity patterns in major depressive and bipolar depressive disorders. J Affect Disord 298(Pt A):43–50

    Article  PubMed  Google Scholar 

  59. Shengli C et al (2022) An aberrant hippocampal subregional network, rather than structure, characterizes major depressive disorder. J Affect Disord 302:123–130

    Article  PubMed  Google Scholar 

  60. Hu J et al (2021) Dysfunction of the anterior and intermediate hippocampal functional network in major depressive disorders across the adult lifespan. Biol Psychol 165:108192

    Article  PubMed  Google Scholar 

  61. Naqvi NH, Bechara A (2009) The hidden island of addiction: the insula. Trends Neurosci 32(1):56–67

    Article  CAS  PubMed  Google Scholar 

  62. Duerden EG et al (2013) Lateralization of affective processing in the insula. Neuroimage 78:159–175

    Article  PubMed  Google Scholar 

  63. Pizzagalli DA, Roberts AC (2022) Prefrontal cortex and depression. Neuropsychopharmacology 47(1):225–246

    Article  PubMed  Google Scholar 

  64. Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35(1):68–77

    Article  CAS  PubMed  Google Scholar 

  65. Rothkirch M et al (2017) Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain 140(4):1147–1157

    Article  PubMed  Google Scholar 

  66. Schmaal L et al (2017) Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Mol Psychiatry 22(6):900–909

    Article  CAS  PubMed  Google Scholar 

  67. Toenders YJ et al (2020) Neurovegetative symptom subtypes in young people with major depressive disorder and their structural brain correlates. Transl Psychiatry 10(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang X et al (2016) Imbalanced spontaneous brain activity in orbitofrontal-insular circuits in individuals with cognitive vulnerability to depression. J Affect Disord 198:56–63

    Article  PubMed  Google Scholar 

  69. Leerssen J et al (2020) Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD working group. Transl Psychiatry 10(1):425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Greve A et al (2011) Functional specialisation in the hippocampus and perirhinal cortex during the encoding of verbal associations. Neuropsychologia 49(9):2746–2754

    Article  PubMed  Google Scholar 

  71. Miller J et al (2018) Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat Commun 9(1):2423

    Article  PubMed  PubMed Central  Google Scholar 

  72. Persson J et al (2013) Remembering our origin: gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behav Brain Res 256:219–228

    Article  PubMed  Google Scholar 

  73. MacMaster FP, Kusumakar V (2004) Hippocampal volume in early onset depression. BMC Med. https://doi.org/10.1186/1741-7015-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  74. Poul Videbech MD, Barbara Ravnkilde PD (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966

    Article  PubMed  Google Scholar 

  75. Lopez-Persem A et al (2020) Differential functional connectivity underlying asymmetric reward-related activity in human and nonhuman primates. Proc Natl Acad Sci USA 117(45):28452–28462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnstone T et al (2007) Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci 27(33):8877–8884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by grants from the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (Grant No. ZYJC21041), the Clinical and Translational Research Fund of Chinese Academy of Medical Sciences (Grant No. 2021-I2M-C&T-B-097), and the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0052).

Author information

Authors and Affiliations

Authors

Contributions

ZZ and YG conceived and designed the study. XH and GH supervised the conduct of the study. RF and LZ are responsible for data acquisition. ZZ, WB, and YG analyzed the neuroimaging and clinical data. KL and LC performed the statistical analysis. ZZ, HQ and MT assisted with related literature search. ZZ and YG drafted the initial manuscript, and HL, LZ XH and GH reviewed and revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoqi Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

This research was approved by the Ethics Committee of the Third People's Hospital of Mianyang, and it is all done in accordance with the ethical standards set out in the 1964 Declaration of Helsinki and its subsequent amendments.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Gao, Y., Feng, R. et al. Aberrant intrinsic hippocampal and orbitofrontal connectivity in drug-naive adolescent patients with major depressive disorder. Eur Child Adolesc Psychiatry 32, 2363–2374 (2023). https://doi.org/10.1007/s00787-022-02086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-022-02086-4

Keywords

Navigation