Skip to main content

Advertisement

Log in

Comparison of laser- and bur-prepared class I cavities restored with two different low-shrinkage composite resins: a randomized, controlled 60-month clinical trial

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to compare the clinical performances of two low-shrinkage composite resins (silorane-based and methacrylate-based) in class I cavities prepared by Er,Cr:YSGG laser or conventional diamond bur over 60 months.

Materials and method

Eighteen patients with four similar-sized occlusal lesions in molar teeth were included to the study. A total of 72 class I cavities were prepared either by Er,Cr:YSGG laser or conventional diamond bur. Cavities were restored with Filtek Silorane (3M-ESPE) (silorane-based) or Kalore (GC) (methacrylate-based) according to the manufacturers’ instructions. All restorative procedures were performed by one operator, and the restorations were examined by two evaluators according to the FDI criteria at baseline and at 6, 12, 24, 36, 48, and 60 months. Patients’ satisfaction about the preparation methods was also evaluated with a questionnaire. Pearson chi-square test was used for statistical analysis (p = 0.05).

Results

The 60-month recall rate was 88.8% and the retention rates for experimental groups were 100%. After 60 months, no significant differences were detected among groups, regarding marginal adaptation, marginal staining, surface staining, color match, and translucency. None of the restorations exhibited postoperative sensitivity or recurrence of caries.

Conclusion

Different preparation techniques had no effect on the longevity of restorations. The two low-shrinkage composite systems tested were both clinically acceptable after 60 months.

Clinical relevance

Low-shrinkage composites showed similar clinical performance in class I cavities prepared with a laser or conventional bur after a 60-month observation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Astvaldsdottir A, Dagerhamn J, van Dijken JW, Naimi-Akbar A, Sandborgh-Englund G, Tranaeus S, Nilsson M (2015) Longevity of posterior resin composite restorations in adults - a systematic review. J Dent 43(8):934–954. https://doi.org/10.1016/j.jdent.2015.05.001

    Article  PubMed  Google Scholar 

  2. Demarco FF, Correa MB, Cenci MS, Moraes RR, Opdam NJ (2012) Longevity of posterior composite restorations: not only a matter of materials. Dent Mater 28(1):87–101. https://doi.org/10.1016/j.dental.2011.09.003

    Article  PubMed  Google Scholar 

  3. Schneider LF, Cavalcante LM, Silikas N (2010) Shrinkage stresses generated during resin-composite applications: a review. J Dent Biomech 2010(30):131630. https://doi.org/10.4061/2010/131630

    Article  PubMed  Google Scholar 

  4. Calheiros FC, Sadek FT, Braga RR, Cardoso PE (2004) Polymerization contraction stress of low-shrinkage composites and its correlation with microleakage in class V restorations. J Dent 32(5):407–412. https://doi.org/10.1016/j.jdent.2004.01.014

    Article  PubMed  Google Scholar 

  5. Kruly PC, Giannini M, Pascotto RC, Tokubo LM, Suga USG, Marques ACR, Terada RSS (2018) Meta-analysis of the clinical behavior of posterior direct resin restorations: low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One 13(2):0191942. https://doi.org/10.1371/journal.pone.0191942

    Article  Google Scholar 

  6. Ferracane JL, Hilton TJ, Stansbury JW, Watts DC, Silikas N, Ilie N, Heintze S, Cadenaro M, Hickel R (2017) Academy of dental materials guidance-resin composites: part II-technique sensitivity (handling, polymerization, dimensional changes). Dent Mater 33(11):1171–1191. https://doi.org/10.1016/j.dental.2017.08.188

    Article  PubMed  Google Scholar 

  7. Lien W, Vandewalle KS (2010) Physical properties of a new silorane-based restorative system. Dent Mater 26(4):337–344. https://doi.org/10.1016/j.dental.2009.12.004

    Article  PubMed  Google Scholar 

  8. Wei YJ, Silikas N, Zhang ZT, Watts DC (2013) The relationship between cyclic hygroscopic dimensional changes and water sorption/desorption of self-adhering and new resin-matrix composites. Dent Mater 29(9):218–226. https://doi.org/10.1016/j.dental.2013.05.010

    Article  Google Scholar 

  9. Naoum SJ, Ellakwa A, Morgan L, White K, Martin FE, Lee IB (2012) Polymerization profile analysis of resin composite dental restorative materials in real time. J Dent 40(1):64–70. https://doi.org/10.1016/j.jdent.2011.10.006

    Article  PubMed  Google Scholar 

  10. Weinmann W, Thalacker C, Guggenberger R (2005) Siloranes in dental composites. Dent Mater 21(1):68–74. https://doi.org/10.1016/j.dental.2004.10.007

    Article  PubMed  Google Scholar 

  11. Boaro LC, Goncalves F, Guimaraes TC, Ferracane JL, Versluis A, Braga RR (2010) Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater 26(12):1144–1150. https://doi.org/10.1016/j.dental.2010.08.003

    Article  PubMed  Google Scholar 

  12. Tantbirojn D, Pfeifer CS, Braga RR, Versluis A (2011) Do low-shrink composites reduce polymerization shrinkage effects? J Dent Res 90(5):596–601. https://doi.org/10.1177/0022034510396217

    Article  PubMed  Google Scholar 

  13. Gregor L, Bortolotto T, Feilzer AJ, Krejci I (2013) Shrinkage kinetics of a methacrylate- and a silorane-based resin composite: effect on marginal integrity. J Adhes Dent 15(3):245–250. https://doi.org/10.3290/j.jad.a28603

    Article  PubMed  Google Scholar 

  14. Park JK, Lee GH, Kim JH, Park MG, Ko CC, Kim HI, Kwon YH (2014) Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites. Dent Mater J 33(1):104–110

    Article  PubMed  Google Scholar 

  15. Hoseinifar R, Mortazavi-Lahijani E, Mollahassani H, Ghaderi A (2017) One year clinical evaluation of a low shrinkage composite compared with a packable composite resin: a randomized clinical trial. J Dent (Tehran) 14(2):84–91

    Google Scholar 

  16. Ferracane JL (2005) Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 21(1):36–42. https://doi.org/10.1016/j.dental.2004.10.004

    Article  PubMed  Google Scholar 

  17. Braga RR, Boaro LC, Kuroe T, Azevedo CL, Singer JM (2006) Influence of cavity dimensions and their derivatives (volume and ‘C’ factor) on shrinkage stress development and microleakage of composite restorations. Dent Mater 22(9):818–823. https://doi.org/10.1016/j.dental.2005.11.010

    Article  PubMed  Google Scholar 

  18. Cunha LG, Alonso RC, Neves AC, de Goes MF, Ferracane JL, Sinhoreti MA (2009) Degree of conversion and contraction stress development of a resin composite irradiated using halogen and LED at two C-factor levels. Oper Dent 34(1):24–31. https://doi.org/10.2341/08-32

    Article  PubMed  Google Scholar 

  19. Mount GJ, Ngo H (2000) Minimal intervention: a new concept for operative dentistry. Quintessence Int 31(8):527–533

    PubMed  Google Scholar 

  20. Osborne JW, Summitt JB (1998) Extension for prevention: is it relevant today? Am J Dent 11(4):189–196

    PubMed  Google Scholar 

  21. Kato C, Taira Y, Suzuki M, Shinkai K, Katoh Y (2012) Conditioning effects of cavities prepared with an Er,Cr:YSGG laser and an air-turbine. Odontology 100(2):164–171. https://doi.org/10.1007/s10266-011-0023-4

    Article  PubMed  Google Scholar 

  22. Kotlow LA (2004) Lasers in pediatric dentistry. Dent Clin N Am 48(4):889–922. https://doi.org/10.1016/j.cden.2004.05.005

    Article  PubMed  Google Scholar 

  23. Verma SK, Maheshwari S, Singh RK, Chaudhari PK (2012) Laser in dentistry: an innovative tool in modern dental practice. Natl J Maxillofac Surg 3(2):124–132. https://doi.org/10.4103/0975-5950.111342

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cvar JF, Ryge G (2005) Reprint of criteria for the clinical evaluation of dental restorative materials. 1971. Clin Oral Investig 9(4):215–232. https://doi.org/10.1007/s00784-005-0018-z

    Article  PubMed  Google Scholar 

  25. Hickel R, Roulet JF, Bayne S, Heintze SD, Mjor IA, Peters M, Rousson V, Randall R, Schmalz G, Tyas M, Vanherle G (2007) Recommendations for conducting controlled clinical studies of dental restorative materials. Science committee project 2/98--FDI world dental federation study design (part I) and criteria for evaluation (part II) of direct and indirect restorations including onlays and partial crowns. J Adhes Dent 9(1):121–147

    PubMed  Google Scholar 

  26. Moldes VL, Capp CI, Navarro RS, Matos AB, Youssef MN, Cassoni A (2009) In vitro microleakage of composite restorations prepared by Er:YAG/Er,Cr:YSGG lasers and conventional drills associated with two adhesive systems. J Adhes Dent 11(3):221–229

    PubMed  Google Scholar 

  27. Shahabi S, Ebrahimpour L, Walsh LJ (2008) Microleakage of composite resin restorations in cervical cavities prepared by Er,Cr:YSGG laser radiation. Aust Dent J 53(2):172–175. https://doi.org/10.1111/j.1834-7819.2008.00028.x

    Article  PubMed  Google Scholar 

  28. Fattah T, Kazemi H, Fekrazad R, Assadian H, Kalhori KA (2013) Er,Cr:YSGG laser influence on microleakage of class V composite resin restorations. Lasers Med Sci 28(5):1257–1262. https://doi.org/10.1007/s10103-012-1200-6

    Article  PubMed  Google Scholar 

  29. Meister J, Franzen R, Forner K, Grebe H, Stanzel S, Lampert F, Apel C (2006) Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers. J Biomed Opt 11(3):34030. https://doi.org/10.1117/1.2204028

    Article  PubMed  Google Scholar 

  30. Bahrololoomi Z, Heydari E (2014) Assessment of tooth preparation via Er:YAG laser and bur on microleakage of dentin adhesives. J Dent (Tehran) 11(2):172–178

    Google Scholar 

  31. Sung EC, Chenard T, Caputo AA, Amodeo M, Chung EM, Rizoiu IM (2005) Composite resin bond strength to primary dentin prepared with Er, Cr:YSSG laser. J Clin Pediatr Dent 30(1):45–49

    Article  PubMed  Google Scholar 

  32. Waterlase Dentistry. California: Biolase Technology Inc; 2009 (cited 2010 Mar 31). Available from: http://www.biolase.com/turbo

  33. Cardoso MV, De Munck J, Coutinho E, Ermis RB, Van Landuyt K, de Carvalho RC, Van Meerbeek B (2008) Influence of Er,Cr:YSGG laser treatment on microtensile bond strength of adhesives to enamel. Oper Dent 33(4):448–455. https://doi.org/10.2341/07-124

    Article  PubMed  Google Scholar 

  34. Demirci M, Tuncer S, Sancakli HS, Tekce N, Baydemir C (2017) Clinical performance of different solvent-based dentin adhesives with nanofill or nanohybrid composites in class III restorations: five year results. Oper Dent 42(4):111–120. https://doi.org/10.2341/16-326-C

    Article  Google Scholar 

  35. Reis A, Loguercio AD (2009) A 36-month clinical evaluation of ethanol/water and acetone-based etch-and-rinse adhesives in non-carious cervical lesions. Oper Dent 34(4):384–391. https://doi.org/10.2341/08-117

    Article  PubMed  Google Scholar 

  36. Ritter AV, Swift EJ, Jr., Heymann HO, Sturdevant JR, Wilder AD, Jr. (2009) An eight-year clinical evaluation of filled and unfilled one-bottle dental adhesives. J Am Dent Assoc 140(1):28–37

    Article  PubMed  Google Scholar 

  37. Zander-Grande C, Amaral RC, Loguercio AD, Barroso LP, Reis A (2014) Clinical performance of one-step self-etch adhesives applied actively in cervical lesions: 24-month clinical trial. Oper Dent 39(3):228–238. https://doi.org/10.2341/12-286-C

    Article  PubMed  Google Scholar 

  38. Burrow MF, Tyas MJ (2007) Clinical evaluation of three adhesive systems for the restoration of non-carious cervical lesions. Oper Dent 32(1):11–15. https://doi.org/10.2341/06-50

    Article  PubMed  Google Scholar 

  39. Burrow MF, Tyas MJ (2012) Comparison of two all-in-one adhesives bonded to non-carious cervical lesions--results at 3 years. Clin Oral Investig 16(4):1089–1094. https://doi.org/10.1007/s00784-011-0595-y

    Article  PubMed  Google Scholar 

  40. Usha C, Ramarao S, John BM, Rajesh P, Swatha S (2017) Evaluation of the shear bond strength of composite resin to wet and dry enamel using dentin bonding agents containing various solvents. J Clin Diagn Res 11(1):41–44. https://doi.org/10.7860/JCDR/2017/21097.9181

    Article  Google Scholar 

  41. Nikhil V, Singh V, Chaudhry S (2011) Comparative evaluation of bond strength of three contemporary self-etch adhesives: an ex vivo study. Contemp Clin Dent 2(2):94–97. https://doi.org/10.4103/0976-237X.83068

    Article  PubMed  PubMed Central  Google Scholar 

  42. Amaral CM, Diniz AM, Arantes EB, Dos Santos GB, Noronha-Filho JD, da Silva EM (2016) Resin-dentin bond stability of experimental 4-META-based etch-and-rinse adhesives solvated by ethanol or acetone. J Adhes Dent 18(6):513–520. https://doi.org/10.3290/j.jad.a37200

    Article  PubMed  Google Scholar 

  43. Poggio C, Beltrami R, Scribante A, Colombo M, Chiesa M (2015) Shear bond strength of one-step self-etch adhesives: pH influence. Dent Res J (Isfahan) 12(3):209–214

    Google Scholar 

  44. Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, Vanherle G, Wakasa K (2000) Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res 79(2):709–714. https://doi.org/10.1177/00220345000790020301

    Article  PubMed  Google Scholar 

  45. De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, Van Meerbeek B (2005) A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 84(2):118–132. https://doi.org/10.1177/154405910508400204

    Article  PubMed  Google Scholar 

  46. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G (2003) Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 28(3):215–235

    PubMed  Google Scholar 

  47. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, J DM, KL VL (2011) State of the art of self-etch adhesives. Dent Mater 27(1):17–28. https://doi.org/10.1016/j.dental.2010.10.023

    Article  PubMed  Google Scholar 

  48. Moura SK, Pelizzaro A, Dal Bianco K, de Goes MF, Loguercio AD, Reis A, Grande RH (2006) Does the acidity of self-etching primers affect bond strength and surface morphology of enamel? J Adhes Dent 8(2):75–83

    PubMed  Google Scholar 

  49. Atash R, Van den Abbeele A (2005) Bond strengths of eight contemporary adhesives to enamel and to dentine: an in vitro study on bovine primary teeth. Int J Paediatr Dent 15(4):264–273. https://doi.org/10.1111/j.1365-263X.2005.00650.x

    Article  PubMed  Google Scholar 

  50. Soderholm KJ, Ottenga M, Nimmo S (2013) Four-year clinical evaluation of two self-etching dentin adhesives of different pH values used to restore non-retentive cervical lesions. Am J Dent 26(1):28–32

    PubMed  Google Scholar 

  51. Baracco B, Perdigao J, Cabrera E, Ceballos L (2013) Two-year clinical performance of a low-shrinkage composite in posterior restorations. Oper Dent 38(6):591–600. https://doi.org/10.2341/12-364-C

    Article  PubMed  Google Scholar 

  52. Efes BG, Yaman BC, Gurbuz O, Gumustas B (2013) Randomized controlled trial of the 2-year clinical performance of a silorane-based resin composite in class 1 posterior restorations. Am J Dent 26(1):33–38

    PubMed  Google Scholar 

  53. Baracco B, Fuentes MV, Ceballos L (2016) Five-year clinical performance of a silorane- vs a methacrylate-based composite combined with two different adhesive approaches. Clin Oral Investig 20(5):991–1001. https://doi.org/10.1007/s00784-015-1591-4

    Article  PubMed  Google Scholar 

  54. Terry DA, Leinfelder KF, Blatz MB (2009) A comparison of advanced resin monomer technologies. Dent Today 28(7):122–123

    PubMed  Google Scholar 

  55. Schmidt M, Dige I, Kirkevang LL, Vaeth M, Horsted-Bindslev P (2015) Five-year evaluation of a low-shrinkage Silorane resin composite material: a randomized clinical trial. Clin Oral Investig 19(2):245–251. https://doi.org/10.1007/s00784-014-1238-x

    Article  PubMed  Google Scholar 

  56. Ruttermann S, Kruger S, Raab WH, Janda R (2007) Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials--a comparative study. J Dent 35(10):806–813. 10.1016/j.jdent.2007.07.014

    Article  PubMed  Google Scholar 

  57. Magno MB, Nascimento GC, Rocha YS, Ribeiro BD, Loretto SC, Maia LC (2016) Silorane-based composite resin restorations are not better than conventional composites - a meta-analysis of clinical studies. J Adhes Dent 18(5):375–386. https://doi.org/10.3290/j.jad.a36916

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to OZ Fatma Dilsad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatma Dilsad, O., Ergin, E., Attar, N. et al. Comparison of laser- and bur-prepared class I cavities restored with two different low-shrinkage composite resins: a randomized, controlled 60-month clinical trial. Clin Oral Invest 24, 357–368 (2020). https://doi.org/10.1007/s00784-019-02931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-02931-y

Keywords

Navigation