Skip to main content

Advertisement

Log in

Impact of endodontic post material on longitudinal changes in interproximal bone level: a randomized controlled pilot trial

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Aim was to evaluate the impact of glass fiber versus titanium endodontic posts on the interproximal bone level around severely damaged endodontically treated teeth.

Materials and methods

Thirty-eight participants of a randomized controlled trial on glass fiber (n = 18) and titanium post-endodontic restorations (n = 20) received radiographs at two different times after post placement (T0 = <12 months and T1 = 36–72 months after post placement). A total of 76 radiographs were analyzed with an image-editing software. Medians of changes in mesial and distal interproximal bone level (∆MBL, ∆DBL) were calculated and tested for statistical significance with respect to post material using Mann-Whitney U test (p < 0.05). Impact of post material on bone level changes was assessed in multilevel mixed-effect linear regression models.

Results

The mean observation period was 54 months for glass fiber and 50 months for titanium posts. Interproximal bone loss was small in both groups during the study period with no significant differences between groups (glass-fiber group, ∆MBL = − 0.03 mm and ∆DBL = − 0.06 mm; titanium group, ∆MBL = − 0.07 mm and ∆DBL = − 0.17 mm; both p > 0.05). Overall, impact of post material on bone loss was almost negligible with a nonsignificant difference between materials of 0.10 mm during the entire study period.

Conclusion

The rigidity of endodontic post material has no impact on the level of alveolar bone support of severely damaged endodontically treated teeth.

Clinical relevance

Post-endodontic restorations of severely damaged teeth can achieve steady levels of periodontal bone support as a parameter of periodontal health, irrespective of post material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarkis-Onofre R, Jacinto RC, Boscato N, Cenci MS, Pereira-Cenci T (2014) Cast metal vs. glass fibre posts: a randomized controlled trial with up to 3 years of follow up. J Dent 42(5):582–587. https://doi.org/10.1016/j.jdent.2014.02.003

    Article  PubMed  Google Scholar 

  2. Zicari F, Van Meerbeek B, Debels E, Lesaffre E, Naert I (2011) An up to 3-year controlled clinical trial comparing the outcome of glass fiber posts and composite cores with gold alloy-based posts and cores for the restoration of endodontically treated teeth. Int J Prosthodont 24(4):363–372

    PubMed  Google Scholar 

  3. Gomez-Polo M, Llido B, Rivero A, Del Rio J, Celemin A (2010) A 10-year retrospective study of the survival rate of teeth restored with metal prefabricated posts versus cast metal posts and cores. J Dent 38(11):916–920. https://doi.org/10.1016/j.jdent.2010.08.006

    Article  PubMed  Google Scholar 

  4. Naumann M, Koelpin M, Beuer F, Meyer-Lueckel H (2012) 10-year survival evaluation for glass-fiber-supported postendodontic restoration: a prospective observational clinical study. J Endod 38(4):432–435. https://doi.org/10.1016/j.joen.2012.01.003

    Article  PubMed  Google Scholar 

  5. Naumann M, Sterzenbach G, Dietrich T, Bitter K, Frankenberger R, von Stein-Lausnitz M (2017) Dentin-like versus rigid endodontic post: 11-year randomized controlled pilot trial on no-wall to 2-wall defects. J Endod 43(11):1770–1775. https://doi.org/10.1016/j.joen.2017.06.030

    Article  PubMed  Google Scholar 

  6. Jung RE, Kalkstein O, Sailer I, Roos M, Hammerle CH (2007) A comparison of composite post buildups and cast gold post-and-core buildups for the restoration of nonvital teeth after 5 to 10 years. Int J Prosthodont 20(1):63–69

    PubMed  Google Scholar 

  7. Figueiredo FE, Martins-Filho PR, Faria ESAL (2015) Do metal post-retained restorations result in more root fractures than fiber post-retained restorations? A systematic review and meta-analysis. J Endod 41(3):309–316. https://doi.org/10.1016/j.joen.2014.10.006

    Article  PubMed  Google Scholar 

  8. Sorrentino R, Di Mauro MI, Ferrari M, Leone R, Zarone F (2016) Complications of endodontically treated teeth restored with fiber posts and single crowns or fixed dental prostheses-a systematic review. Clin Oral Investig 20(7):1449–1457. https://doi.org/10.1007/s00784-016-1919-8

    Article  PubMed  Google Scholar 

  9. Balto K (2011) Root-filled teeth with adequate restorations and root canal treatment have better treatment outcomes. Evid Based Dent 12(3):72–73. https://doi.org/10.1038/sj.ebd.6400806

    Article  PubMed  Google Scholar 

  10. Gillen BM, Looney SW, Gu LS, Loushine BA, Weller RN, Loushine RJ, Pashley DH, Tay FR (2011) Impact of the quality of coronal restoration versus the quality of root canal fillings on success of root canal treatment: a systematic review and meta-analysis. J Endod 37(7):895–902. https://doi.org/10.1016/j.joen.2011.04.002

    Article  PubMed  Google Scholar 

  11. McGuire MK, Nunn ME (1996) Prognosis versus actual outcome. III. The effectiveness of clinical parameters in accurately predicting tooth survival. J Periodontol 67(7):666–674. https://doi.org/10.1902/jop.1996.67.7.666

    Article  PubMed  Google Scholar 

  12. Arvidson K, Cottler-Fox M, Friberg U (1980) Effects of dental root posts on human gingival fibroblasts in vitro. J Dent Res 59(3):651–656. https://doi.org/10.1177/00220345800590031601

    Article  PubMed  Google Scholar 

  13. Eliasson S, Bergstrom J, Sanda A (1995) Periodontal bone loss of teeth with metal posts. A radiographic study. J Clin Periodontol 22(11):850–853

    Article  PubMed  Google Scholar 

  14. Timmerman MF, Van der Weijden GA (2006) Bone level around endodontically treated teeth in periodontitis patients. J Clin Periodontol 33(9):620–625. https://doi.org/10.1111/j.1600-051X.2006.00958.x

    Article  PubMed  Google Scholar 

  15. Katsamakis S, Timmerman M, Van der Velden U, de Cleen M, Van der Weijden F (2009) Patterns of bone loss around teeth restored with endodontic posts. J Clin Periodontol 36(11):940–949. https://doi.org/10.1111/j.1600-051X.2009.01465.x

    Article  PubMed  Google Scholar 

  16. Coelho CS, Biffi JC, Silva GR, Abrahao A, Campos RE, Soares CJ (2009) Finite element analysis of weakened roots restored with composite resin and posts. Dent Mater J 28(6):671–678

    Article  PubMed  Google Scholar 

  17. Lassila LV, Tanner J, Le Bell AM, Narva K, Vallittu PK (2004) Flexural properties of fiber reinforced root canal posts. Dent Mater 20(1):29–36

    Article  PubMed  Google Scholar 

  18. Zicari F, Coutinho E, Scotti R, Van Meerbeek B, Naert I (2013) Mechanical properties and micro-morphology of fiber posts. Dent Mater 29(4):e45–e52. https://doi.org/10.1016/j.dental.2012.11.001

    Article  PubMed  Google Scholar 

  19. Hirschfeld Z, Stern N (1972) Post and core--the biomechanical aspect. Aust Dent J 17(6):467–468

    Article  PubMed  Google Scholar 

  20. Thresher RW, Saito GE (1973) The stress analysis of human teeth. J Biomech 6(5):443–449

    Article  PubMed  Google Scholar 

  21. Reinhardt RA, Krejci RF, Pao YC, Stannard JG (1983) Dentin stresses in post-reconstructed teeth with diminishing bone support. J Dent Res 62(9):1002–1008. https://doi.org/10.1177/00220345830620090101

    Article  PubMed  Google Scholar 

  22. Sterzenbach G, Franke A, Naumann M (2012) Rigid versus flexible dentine-like endodontic posts-clinical testing of a biomechanical concept: seven-year results of a randomized controlled clinical pilot trial on endodontically treated abutment teeth with severe hard tissue loss. J Endod 38(12):1557–1563. https://doi.org/10.1016/j.joen.2012.08.015

    Article  PubMed  Google Scholar 

  23. D'Agostino RB, Belanger A, Ralph B, D’Agostino RB Jr (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44:316–321

    Google Scholar 

  24. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G (2004) Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 19(2):247–259

    PubMed  Google Scholar 

  25. Taylor RC, McGlumphy EA, Tatakis DN, Beck FM (2004) Radiographic and clinical evaluation of single-tooth Biolok implants: a 5-year study. Int J Oral Maxillofac Implants 19(6):849–854

    PubMed  Google Scholar 

  26. Gatti C, Gatti F, Chiapasco M, Esposito M (2008) Outcome of dental implants in partially edentulous patients with and without a history of periodontitis: a 5-year interim analysis of a cohort study. Eur J Oral Implantol 1(1):45–51

    PubMed  Google Scholar 

  27. Vigolo P, Zaccaria M (2010) Clinical evaluation of marginal bone level change of multiple adjacent implants restored with splinted and nonsplinted restorations: a 5-year prospective study. Int J Oral Maxillofac Implants 25(6):1189–1194

    PubMed  Google Scholar 

  28. Albrektsson T, Zarb G, Worthington P, Eriksson AR (1986) The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1(1):11–25

    PubMed  Google Scholar 

  29. Astrand P, Engquist B, Anzen B, Bergendal T, Hallman M, Karlsson U, Kvint S, Lysell L, Rundcranz T (2004) A three-year follow-up report of a comparative study of ITI dental implants and Branemark system implants in the treatment of the partially edentulous maxilla. Clin Implant Dent Relat Res 6(3):130–141

    Article  PubMed  Google Scholar 

  30. Roscoe MG, Noritomi PY, Novais VR, Soares CJ (2013) Influence of alveolar bone loss, post type, and ferrule presence on the biomechanical behavior of endodontically treated maxillary canines: strain measurement and stress distribution. J Prosthet Dent 110(2):116–126. https://doi.org/10.1016/S0022-3913(13)60350-9

    Article  PubMed  Google Scholar 

  31. Adyani-Fard D, Kim TS, Eickholz P (2011) Interproximal bone loss at contra-lateral teeth with and without root canal filling in periodontitis patients. J Clin Periodontol 38(3):269–275. https://doi.org/10.1111/j.1600-051X.2010.01657.x

    Article  PubMed  Google Scholar 

  32. Santos AF, Meira JB, Tanaka CB, Xavier TA, Ballester RY, Lima RG, Pfeifer CS, Versluis A (2010) Can fiber posts increase root stresses and reduce fracture? J Dent Res 89(6):587–591. https://doi.org/10.1177/0022034510363382

    Article  PubMed  Google Scholar 

  33. Juloski J, Radovic I, Goracci C, Vulicevic ZR, Ferrari M (2012) Ferrule effect: a literature review. J Endod 38(1):11–19. https://doi.org/10.1016/j.joen.2011.09.024

    Article  PubMed  Google Scholar 

  34. Magne P, Lazari PC, Carvalho MA, Johnson T, Del Bel Cury AA (2017) Ferrule-effect dominates over use of a fiber post when restoring endodontically treated incisors: an in vitro study. Oper Dent 42(4):396–406. https://doi.org/10.2341/16-243-L

    Article  PubMed  Google Scholar 

  35. Rodriguez FR, Paganoni N, Eickholz P, Weiger R, Walter C (2017) Presence of root canal treatment has no influence on periodontal bone loss. Clin Oral Investig 21:2741–2748. https://doi.org/10.1007/s00784-00017-02076-00784

    Article  PubMed  Google Scholar 

  36. Bachicha WS, DiFiore PM, Miller DA, Lautenschlager EP, Pashley DH (1998) Microleakage of endodontically treated teeth restored with posts. J Endod 24(11):703–708. https://doi.org/10.1016/S0099-2399(98)80157-X

    Article  PubMed  Google Scholar 

  37. Reid LC, Kazemi RB, Meiers JC (2003) Effect of fatigue testing on core integrity and post microleakage of teeth restored with different post systems. J Endod 29(2):125–131. https://doi.org/10.1097/00004770-200302000-00010

    Article  PubMed  Google Scholar 

  38. Guth JF, Edelhoff D, Goldberg J, Magne P (2016) CAD/CAM polymer vs direct composite resin core buildups for endodontically treated molars without ferrule. Oper Dent 41(1):53–63. https://doi.org/10.2341/14-256-L

    Article  PubMed  Google Scholar 

  39. Magne P, Goldberg J, Edelhoff D, Guth JF (2016) Composite resin core buildups with and without post for the restoration of endodontically treated molars without ferrule. Oper Dent 41(1):64–75. https://doi.org/10.2341/14-258-L

    Article  PubMed  Google Scholar 

  40. Kim TS, Benn DK, Eickholz P (2002) Accuracy of computer-assisted radiographic measurement of interproximal bone loss in vertical bone defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(3):379–387

    Article  PubMed  Google Scholar 

  41. Tihanyi D, Gera I, Eickholz P (2011) Influence of individual brightness and contrast adjustment on accuracy of radiographic measurements of infrabony defects. Dentomaxillofac Radiol 40(3):177–183. https://doi.org/10.1259/dmfr/56018062

    Article  PubMed  PubMed Central  Google Scholar 

  42. Skupien JA, Opdam NJ, Winnen R, Bronkhorst EM, Kreulen CM, Pereira-Cenci T, Huysmans MC (2016) Survival of restored endodontically treated teeth in relation to periodontal status. Braz Dent J 27(1):37–40. https://doi.org/10.1590/0103-6440201600495

    Article  PubMed  Google Scholar 

  43. Savage A, Eaton KA, Moles DR, Needleman I (2009) A systematic review of definitions of periodontitis and methods that have been used to identify this disease. J Clin Periodontol 36(6):458–467. https://doi.org/10.1111/j.1600-051X.2009.01408.x

    Article  PubMed  Google Scholar 

  44. de Souza RF, Ahmadi M, Ribeiro AB, Emami E (2014) Focusing on outcomes and methods in removable prosthodontics trials: a systematic review. Clin Oral Implants Res 25(10):1137–1141. https://doi.org/10.1111/clr.12254

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manja von Stein-Lausnitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article contains a study with human participants performed by the authors. The number of the approval of the ethics committee is No. NCT01520766.

Informed consent

For this type of study, informed consent was obtained from all individual participants included in the study.

Appendix

Appendix

Measurement of radiographs was performed using the following method:

  1. 1.

    Calibration of radiographs (Fig. 2)

    Radiograph was rotated to orientate endodontic posts in a perpendicular position.

  2. 2.

    Plotting of horizontal reference lines (Fig. 3)

    Four horizontal reference lines were plotted on a level with mesial interproximal bone margin, distal interproximal bone margin, and post tip and on a level with the radiographic apex of root canal filling. Two additional horizontal reference lines were set at the upper and lower level of the metal ball on the radiograph of T1.

  3. 3.

    Measurement of distances [pixel] (Fig. 3)

    The following distances were plotted and measured perpendicular to the horizontal reference lines.

    • Distance A (post tip–tip of root canal filling) at T0 (= A0), T1 (= A1).

      = distance of reference

    • Distance B (tip of root canal filling–interproximal bone margin mesial) at T0 (= B0) and T1 (= B1)

    • Distance C (tip of root canal filling–interproximal bone margin distal) at T0 (= C0) and T1 (= C1)

  4. 4.

    Scaling with factor of correction

    Due to the fact that the radiographs were not in identic position at T0 and T1, differences in projection were equilibrated via calculating a factor of correction (FC) with distances of reference A0 and A1, to scale the radiograph T0 into relation of radiograph T1.

    Example: A0 = 264 pixel; A1 = 294 pixel

    \( \frac{294}{264} \) = 1,113636364 = FC

    Transfer of FC to

    B0 × 1,113636364 = B0c [pixel]

    C0 × 1,113636364 = C0c [pixel]

  5. 5.

    Calculation of changes in interproximal bone level (MBL, DBL)

    ∆B1 − B0c = MBL [pixel] Change of mesial interproximal bone level

    ∆C1 − C0c = DBL [pixel] Change of distal interproximal bone level

  6. 6.

    Translation pixel to millimeters

    With the equation \( \frac{D\ \left[\mathrm{mm}\right]}{D\ \left[\mathrm{pixel}\right]}=\frac{D\ \left[\mathrm{mm}\right]}{D\ \left[\mathrm{pixel}\right]} \), pixels were translated into millimeters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Stein-Lausnitz, M., von Stein-Lausnitz, A., Reissmann, D.R. et al. Impact of endodontic post material on longitudinal changes in interproximal bone level: a randomized controlled pilot trial. Clin Oral Invest 23, 2303–2311 (2019). https://doi.org/10.1007/s00784-018-2698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2698-1

Keywords

Navigation