Skip to main content

Advertisement

Log in

Microstructure and chemical analysis of four calcium silicate-based cements in different environmental conditions

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to analyze the microstructure and crystalline structures of ProRoot MTA, Biodentine, CEM Cement, and Retro MTA when exposed to phosphate-buffered saline, butyric acid, and blood.

Methods and materials

Mixed samples of ProRoot MTA, Biodentine, CEM Cement, and Retro MTA were exposed to either phosphate-buffered saline, butyric acid, or blood. Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopic (EDX) evaluations were conducted of specimens. X-ray diffraction (XRD) analysis was also performed for both hydrated and powder forms of evaluated calcium silicate cements.

Results

The peak of tricalcium silicate and dicalcium silicate detected in all hydrated cements was smaller than that seen in their unhydrated powders. The peak of calcium hydroxide (Ca(OH)2) in blood- and acid-exposed ProRoot MTA, CEM Cement, and Retro MTA specimens were smaller than that of specimens exposed to PBS. The peak of Ca(OH)2 seen in Biodentine specimens exposed to blood was similar to that of PBS-exposed specimens. On the other hand, those exposed to acid exhibited smaller peaks of Ca(OH)2.

Conclusion

Exposure to blood or acidic pH decreased Ca(OH)2 crystalline formation in ProRoot MTA, CEM Cement and Retro MTA. However, a decrease in Ca(OH)2 was only seen when Biodentine exposed to acid.

Clinical relevance

The formation of Ca(OH)2 which influences the biological properties of calcium silicate cements was impaired by blood and acid exposures in ProRoot MTA, CEM Cement, and Retro MTA; however, in the case of Biodentine, only exposure to acid had this detrimental effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nekoofar MH, Davies TE, Stone D, Basturk FB, Dummer PM (2011) Microstructure and chemical analysis of blood-contaminated mineral trioxide aggregate. Int Endod J 44:1011–1018. https://doi.org/10.1111/j.1365-2591.2011.01909.x

    Article  PubMed  Google Scholar 

  2. Marconyak LJ Jr, Kirkpatrick TC, Roberts HW, Roberts MD, Aparicio A, Himel VT, Sabey KA (2016) A comparison of coronal tooth discoloration elicited by various endodontic reparative materials. J Endod 42(3):470–473. https://doi.org/10.1016/j.joen.2015.10.013

    Article  PubMed  Google Scholar 

  3. Kohli MR, Yamaguchi M, Setzer FC, Karabucak B (2015) Spectrophotometric analysis of coronal tooth discoloration induced by various bioceramic cements and other endodontic materials. J Endod 41(11):1862–1866. https://doi.org/10.1016/j.joen.2015.07.003

    Article  PubMed  Google Scholar 

  4. Nosrat A, Nekoofar MH, Bolhari B, Dummer PM (2012) Unintentional extrusion of mineral trioxide aggregate: a report of three cases. Int Endod J 45(12):1165–1176. https://doi.org/10.1111/j.1365-2591.2012.02082.x

    Article  PubMed  Google Scholar 

  5. Bakhtiar H, Nekoofar MH, Aminishakib P, Abedi F, Naghi Moosavi F, Esnaashari E, Azizi A, Esmailian S, Ellini MR, Mesgarzadeh V, Sezavar M, About I (2017) Human pulp responses to partial pulpotomy treatment with TheraCal as compared with Biodentine and ProRoot MTA: a clinical trial. J Endod 43:1786–1791. https://doi.org/10.1016/j.joen.2017.06.025

    Article  PubMed  Google Scholar 

  6. Butt N, Talwar S, Chaudhry S, Nawal RR, Yadav S, Bali A (2014) Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian J Dent Res 25(6):692–697. https://doi.org/10.4103/0970-9290.152163

    Article  PubMed  Google Scholar 

  7. Kim JR, Nosrat A, Fouad AF (2015) Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J Dent 43(2):241–247. https://doi.org/10.1016/j.jdent.2014.11.004

    Article  PubMed  Google Scholar 

  8. Setbon HM, Devaux J, Iserentant A, Leloup G, Leprince JG (2014) Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements. Dent Mater 30(12):1291–1303. https://doi.org/10.1016/j.dental.2014.09.005

    Article  PubMed  Google Scholar 

  9. Camilleri J, Laurent P, About I (2014) Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod 40(11):1846–1854. https://doi.org/10.1016/j.joen.2014.06.018

    Article  PubMed  Google Scholar 

  10. Esmaeili B, Alaghehmand H, Kordafshari T, Daryakenari G, Ehsani M, Bijani A (2016) Coronal discoloration induced by calcium-enriched mixture, mineral trioxide aggregate and calcium hydroxide: a spectrophotometric analysis. Iran Endod J 11(1):23–28. https://doi.org/10.7508/iej.2016.01.005

    Article  PubMed  Google Scholar 

  11. Shokouhinejad N, Nekoofar MH, Pirmoazen S, Shamshiri AR, Dummer PM (2016) Evaluation and comparison of occurrence of tooth discoloration after the application of various calcium silicate-based cements: an ex vivo study. J Endod 42(1):140–144. https://doi.org/10.1016/j.joen.2015.08.034

    Article  PubMed  Google Scholar 

  12. Rouhani A, Akbari M, Farhadi-Faz A (2016) Comparison of tooth discoloration induced by calcium-enriched mixture and mineral trioxide aggregate. Iran Endod J 11(3):175–178. https://doi.org/10.7508/iej.2016.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  13. Utneja S, Nawal RR, Talwar S, Verma M (2015) Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement—review of its composition, properties and applications. Restor Dent Endod 40(1):1–13. https://doi.org/10.5395/rde.2015.40.1.1

    Article  PubMed  Google Scholar 

  14. Kang SH, Shin YS, Lee HS, Kim SO, Shin Y, Jung IY, Song JS (2015) Color changes of teeth after treatment with various mineral trioxide aggregate-based materials: an ex vivo study. J Endod 41(5):737–741. https://doi.org/10.1016/j.joen.2015.01.019

    Article  PubMed  Google Scholar 

  15. Ha WN, Bentz DP, Kahler B, Walsh LJ (2015) D90: the strongest contributor to setting time in mineral trioxide aggregate and Portland cement. J Endod 41(7):1146–1150. https://doi.org/10.1016/j.joen.2015.02.033

    Article  PubMed  Google Scholar 

  16. Malkondu O, Karapinar Kazandag M, Kazazoglu E (2014) A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int 2014:160951. https://doi.org/10.1155/2014/160951 10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bakhtiar H, Mirzaei H, Bagheri MR, Fani N, Mashhadiabbas F, Baghaban Eslaminejad M, Sharifi D, Nekoofar MH, Dummer P (2017) Histologic tissue response to furcation perforation repair using mineral trioxide aggregate or dental pulp stem cells loaded onto treated dentin matrix or tricalcium phosphate. Clin Oral Investig 21:1579–1588. https://doi.org/10.1007/s00784-016-1967-0

    Article  PubMed  Google Scholar 

  18. Nekoofar MH, Stone DF, Dummer PM (2010) The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int Endod J 43(9):782–791. https://doi.org/10.1111/j.1365-2591.2010.01745.x

    Article  PubMed  Google Scholar 

  19. Bolhari B, Nekoofar MH, Sharifian M, Ghabrai S, Meraji N, Dummer PM (2014) Acid and microhardness of mineral trioxide aggregate and mineral trioxide aggregate-like materials. J Endod 40(3):432–435. https://doi.org/10.1016/j.joen.2013.10.014

    Article  PubMed  Google Scholar 

  20. Nekoofar MH, Davies TE, Stone D, Basturk FB, Dummer PM (2011) Microstructure and chemical analysis of blood-contaminated mineral trioxide aggregate. Int Endod J 44(11):1011–1018. https://doi.org/10.1111/j.1365-2591.2011.01909.x

    Article  PubMed  Google Scholar 

  21. Sheykhrezae MS, Meraji N, Ghanbari F, Nekoofar MH, Bolhari B, Dummer PMH (2017) Effect of blood contamination on the compressive strength of three calcium silicate-based cements. Aust Endod J. https://doi.org/10.1111/aej.12227

    Article  PubMed  Google Scholar 

  22. Provenzano JC, Rocas IN, Tavares LF, Neves BC, Siqueira JF Jr (2015) Short-chain fatty acids in infected root canals of teeth with apical periodontitis before and after treatment. J Endod 41(6):831–835. https://doi.org/10.1016/j.joen.2015.02.006

    Article  PubMed  Google Scholar 

  23. Nekoofar M, Aseeley Z, Dummer P (2010) The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. Int Endod J 43(4):312–320

    Article  PubMed  Google Scholar 

  24. Namazikhah MS, Nekoofar MH, Sheykhrezae MS, Salariyeh S, Hayes SJ, Bryant ST, Mohammadi MM, Dummer PM (2008) The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J 41:108–116. https://doi.org/10.1111/j.1365-2591.2007.01325.x

    Article  PubMed  Google Scholar 

  25. Marques MR, Loebenberg R, Almukainzi M (2011) Simulated biological fluids with possible application in dissolution testing. Dissolut Technol 18(3):15–28. https://doi.org/10.14227/DT180311P15

    Article  Google Scholar 

  26. Lee YL, Lee BS, Lin FH, Yun Lin A, Lan WH, Lin CP (2004) Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 25(5):787–793

    Article  PubMed  Google Scholar 

  27. Grazziotin-Soares R, Nekoofar MH, Davies TE, Bafail A, Alhaddar E, Hubler R, Busato AL, Dummer PM (2014) Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties. Int Endod J 47:520–533. https://doi.org/10.1111/iej.12181

    Article  PubMed  Google Scholar 

  28. Camilleri J (2010) Hydration characteristics of calcium silicate cements with alternative radiopacifiers used as root-end filling materials. J Endod 36(3):502–508. https://doi.org/10.1016/j.joen.2009.10.018

    Article  PubMed  Google Scholar 

  29. Basturk FB, Nekoofar MH, Gunday M, Dummer PMH (2017) X-ray diffraction analysis of MTA mixed and placed with various techniques. Clin Oral Investig. https://doi.org/10.1007/s00784-017-2241-9

  30. Camilleri J, Sorrentino F, Damidot D (2013) Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 29(5):580–593. https://doi.org/10.1016/j.dental.2013.03.007

    Article  PubMed  Google Scholar 

  31. Lee YL, Wang WH, Lin FH, Lin CP (2017) Hydration behaviors of calcium silicate-based biomaterials. J Formos Med Assoc 116(6):424–431. https://doi.org/10.1016/j.jfma.2016.07.009

    Article  PubMed  Google Scholar 

  32. Kayahan MB, Nekoofar MH, McCann A, Sunay H, Kaptan RF, Meraji N, Dummer PM (2013) Effect of acid etching procedures on the compressive strength of 4 calcium silicate-based endodontic cements. J Endod 39:1646–1648. https://doi.org/10.1016/j.joen.2013.09.008

    Article  PubMed  Google Scholar 

  33. Bolhari B, Ashofteh Yazdi K, Sharifi F, Pirmoazen S (2015) Comparative scanning electron microscopic study of the marginal adaptation of four root-end filling materials in presence and absence of blood. J Dent (Tehran) 12(3):226–234

    Google Scholar 

  34. Grech L, Mallia B, Camilleri J (2013) Characterization of set intermediate restorative material, biodentine, bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J 46(7):632–641. https://doi.org/10.1111/iej.12039

    Article  PubMed  Google Scholar 

  35. Formosa LM, Mallia B, Camilleri J (2012) The effect of curing conditions on the physical properties of tricalcium silicate cement for use as a dental biomaterial. Int Endod J 45(4):326–336. https://doi.org/10.1111/j.1365-2591.2011.01980.x

    Article  PubMed  Google Scholar 

  36. Grazziotin-Soares R, Nekoofar MH, Davies T, Hubler R, Meraji N, Dummer PMH (2017) Crystalline phases involved in the hydration of calcium silicate-based cements: semi-quantitative Rietveld X-ray diffraction analysis. Aust Endod J. https://doi.org/10.1111/aej.12226

  37. De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM (2009) Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod 35(10):1387–1390. https://doi.org/10.1016/j.joen.2009.06.022

    Article  PubMed  Google Scholar 

  38. Forbes WF, Gentleman JF (1998) Risk factors, causality, and policy initiatives: the case of aluminum and mental impairment. Exp Gerontol 33(1–2):141–154

    Article  PubMed  Google Scholar 

  39. Camilleri J, Kralj P, Veber M, Sinagra E (2012) Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J 45(8):737–743. https://doi.org/10.1111/j.1365-2591.2012.02027.x

    Article  PubMed  Google Scholar 

  40. Basturk FB, Nekoofar MH, Gunday M, Dummer PM (2014) Effect of various mixing and placement techniques on the flexural strength and porosity of mineral trioxide aggregate. J Endod 40:441–445. https://doi.org/10.1016/j.joen.2013.08.010

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by Tehran University of Medical Sciences, Tehran, Iran (grant no. 27183).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Meraji or M. H. Nekoofar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Electronic supplementary material

ESM 1

(PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashofteh Yazdi, K., Ghabraei, S., Bolhari, B. et al. Microstructure and chemical analysis of four calcium silicate-based cements in different environmental conditions. Clin Oral Invest 23, 43–52 (2019). https://doi.org/10.1007/s00784-018-2394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2394-1

Keywords

Navigation