Skip to main content

Advertisement

Log in

TGF-βRI kinase activity mediates Emdogain-stimulated in vitro osteoclastogenesis

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Emdogain, containing an extract of fetal porcine enamel matrix proteins, is a potent stimulator of in vitro osteoclastogenesis. The underlying molecular mechanisms are, however, unclear.

Material and methods

Here, we have addressed the role of transforming growth factor-beta receptor type 1 (TGF-βRI) kinase activity on osteoclastogenesis in murine bone marrow cultures.

Results

Inhibition of TGF-βRI kinase activity with SB431542 abolished the effect of Emdogain on osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand or tumor necrosis factor-alpha. SB431542 also suppressed the Emdogain-mediated increase of OSCAR, a co-stimulatory protein, and dendritic cell-specific transmembrane protein and Atp6v0d2, the latter two being involved in cell fusion. Similar to transforming growth factor-beta1 (TGF-β), Emdogain could not compensate for the inhibition of IL-4 and IFNγ on osteoclast formation. When using the murine macrophage cell line RAW246.7, SB431542 and the smad-3 inhibitor SIS3 blocked Emdogain-stimulated expression of the transcription factor NFATc1.

Conclusions

Taken together, the data suggest that TGF-βRI kinase activity is necessary to mediate in vitro effects of Emdogain on osteoclastogenesis.

Clinical relevance

Based on these in vitro data, we can speculate that at least part of the clinical effects of Emdogain on osteoclastogenesis is mediated via TGF-β signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. doi:10.1038/nature01658

    Article  PubMed  Google Scholar 

  2. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  Google Scholar 

  3. Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, Einhorn TA (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014. doi:10.1359/jbmr.2001.16.6.1004

    Article  PubMed  Google Scholar 

  4. Braun T, Schett G (2012) Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep 10:101–108. doi:10.1007/s11914-012-0104-5

    Article  PubMed  Google Scholar 

  5. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  PubMed  Google Scholar 

  6. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763. doi:10.1038/nature02444

    Article  PubMed  Google Scholar 

  7. Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, Nagata K, Iijima T, Horiuchi M, Matsusaki H, Hieshima K, Yoshie O, Nomiyama H (2004) RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med 200:941–946. doi:10.1084/jem.20040518

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 12:1403–1409. doi:10.1038/nm1514

    Article  PubMed  Google Scholar 

  9. Bosshardt DD (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35:87–105. doi:10.1111/j.1600-051X.2008.01264.x

    Article  PubMed  Google Scholar 

  10. Grandin HM, Gemperli AC, Dard M (2012) Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning. Tissue Eng Part B Rev 18:181–202. doi:10.1089/ten.TEB.2011.0365

    Article  PubMed  Google Scholar 

  11. Sculean A, Alessandri R, Miron R, Salvi GE, Bosshardt DD (2011) Enamel matrix proteins and periodontal wound healing and regeneration. Clin Adv Periodontics 101–117. doi: 10.1111/j.1600-9657.2008.00559.x

  12. St George G, Darbar U, Thomas G (2006) Inflammatory external root resorption following surgical treatment for intra-bony defects: a report of two cases involving Emdogain and a review of the literature. J Clin Periodontol 33:449–454. doi:10.1111/j.1600-051X.2006.00926.x

    Article  PubMed  Google Scholar 

  13. Yagi Y, Suda N, Yamakoshi Y, Baba O, Moriyama K (2009) In vivo application of amelogenin suppresses root resorption. J Dent Res 88:176–181. doi:10.1177/0022034508329451

    Article  PubMed  Google Scholar 

  14. Hamamoto Y, Kawasaki N, Jarnbring F, Hammarstrom L (2002) Effects and distribution of the enamel matrix derivative Emdogain in the periodontal tissues of rat molars transplanted to the abdominal wall. Dent Traumatol 18:12–23

    Article  PubMed  Google Scholar 

  15. Schjott M, Andreasen JO (2005) Emdogain does not prevent progressive root resorption after replantation of avulsed teeth: a clinical study. Dent Traumatol 21:46–50. doi:10.1111/j.1600-9657.2004.00295.x

    Article  PubMed  Google Scholar 

  16. Poi WR, Carvalho RM, Panzarini SR, Sonoda CK, Manfrin TM, Rodrigues Tda S (2007) Influence of enamel matrix derivative (Emdogain) and sodium fluoride on the healing process in delayed tooth replantation: histologic and histometric analysis in rats. Dent Traumatol 23:35–41. doi:10.1111/j.1600-9657.2006.00481.x

    PubMed  Google Scholar 

  17. Filippi A, Pohl Y, von Arx T (2006) Treatment of replacement resorption by intentional replantation, resection of the ankylosed sites, and Emdogain—results of a 6-year survey. Dent Traumatol 22:307–311. doi:10.1111/j.1600-9657.2005.00363.x

    Article  PubMed  Google Scholar 

  18. Fridstrom M, Schollin J, Crossner CG (2008) Evaluating Emdogain and healing of replanted teeth using an intra-individual experimental-control study design. Dent Traumatol 24:299–304. doi:10.1111/j.1600-9657.2008.00559.x

    Article  PubMed  Google Scholar 

  19. Itoh N, Kasai H, Ariyoshi W, Harada E, Yokota M, Nishihara T (2006) Mechanisms involved in the enhancement of osteoclast formation by enamel matrix derivative. J Periodontal Res 41:273–279. doi:10.1111/j.1600-0765.2005.00868.x

    Article  PubMed  Google Scholar 

  20. Otsuka T, Kasai H, Yamaguchi K, Nishihara T (2005) Enamel matrix derivative promotes osteoclast cell formation by RANKL production in mouse marrow cultures. J Dent 33:749–755. doi:10.1016/j.jdent.2005.02.006

    Article  PubMed  Google Scholar 

  21. Kawase T, Okuda K, Yoshie H, Burns DM (2002) Anti-TGF-beta antibody blocks enamel matrix derivative-induced upregulation of p21WAF1/cip1 and prevents its inhibition of human oral epithelial cell proliferation. J Periodontal Res 37:255–262

    Article  PubMed  Google Scholar 

  22. Hama H, Azuma H, Seto H, Kido J, Nagata T (2008) Inhibitory effect of enamel matrix derivative on osteoblastic differentiation of rat calvaria cells in culture. J Periodontal Res 43:179–185. doi:10.1111/j.1600-0765.2007.01010.x

    Article  PubMed  Google Scholar 

  23. Wada Y, Yamamoto H, Nanbu S, Mizuno M, Tamura M (2008) The suppressive effect of enamel matrix derivative on osteocalcin gene expression of osteoblasts is neutralized by an antibody against TGF-beta. J Periodontol 79:341–347. doi:10.1902/jop.2008.070197

    Article  PubMed  Google Scholar 

  24. Heng NH, N'Guessan PD, Kleber BM, Bernimoulin JP, Pischon N (2007) Enamel matrix derivative induces connective tissue growth factor expression in human osteoblastic cells. J Periodontol 78:2369–2379. doi:10.1902/jop.2007.070130

    Article  PubMed  Google Scholar 

  25. Gruber R, Bosshardt DD, Richard JM, Gemperli AC, Buser D and Sculean A (2013) Enamel matrix derivative inhibits adipocyte differentiation of 3T3-L1 cells via activation of TGF-βRI kinase activity. PLoS One

  26. Sakoda K, Nakajima Y, Noguchi K (2012) Enamel matrix derivative induces production of vascular endothelial cell growth factor in human gingival fibroblasts. Eur J Oral Sci 120:513–519. doi:10.1111/j.1600-0722.2012.00999.x

    Article  PubMed  Google Scholar 

  27. Fox SW, Fuller K, Bayley KE, Lean JM, Chambers TJ (2000) TGF-beta 1 and IFN-gamma direct macrophage activation by TNF-alpha to osteoclastic or cytocidal phenotype. J Immunol 165:4957–4963

    Article  PubMed  Google Scholar 

  28. Fox SW, Evans KE, Lovibond AC (2008) Transforming growth factor-beta enables NFATc1 expression during osteoclastogenesis. Biochem Biophys Res Commun 366:123–128. doi:10.1016/j.bbrc.2007.11.120

    Article  PubMed Central  PubMed  Google Scholar 

  29. Miyazono K, Hellman U, Wernstedt C, Heldin CH (1988) Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem 263:6407–6415

    PubMed  Google Scholar 

  30. Nagano T, Iwata T, Ogata Y, Tanabe T, Gomi K, Fukae M, Arai T, Oida S (2004) Effect of heat treatment on bioactivities of enamel matrix derivatives in human periodontal ligament (HPDL) cells. J Periodontal Res 39:249–256. doi:10.1111/j.1600-0765.2004.00733.x

    Article  PubMed  Google Scholar 

  31. Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H, Yeh WC, Lee SK, Lorenzo JA, Choi Y (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202:589–595. doi:10.1084/jem.20050978

    Article  PubMed Central  PubMed  Google Scholar 

  32. Cicek M, Vrabel A, Sturchio C, Pederson L, Hawse JR, Subramaniam M, Spelsberg TC, Oursler MJ (2011) TGF-beta inducible early gene 1 regulates osteoclast differentiation and survival by mediating the NFATc1, AKT, and MEK/ERK signaling pathways. PLoS One 6:e17522. doi:10.1371/journal.pone.0017522

    Article  PubMed Central  PubMed  Google Scholar 

  33. Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H, Hirose J, Omata Y, Yasuda H, Imamura T, Nakamura K, Tanaka S (2011) Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res 26:1447–1456. doi:10.1002/jbmr.357

    Article  PubMed  Google Scholar 

  34. Lou Z, Yang Y, Ren T, Tang S, Peng X, Lu Q, Sun Y, Guo W (2013) Smad3 is the key to transforming growth factor-beta1-induced osteoclast differentiation in giant cell tumor of bone. Med Oncol 30:606. doi:10.1007/s12032-013-0606-8

    Article  PubMed  Google Scholar 

  35. Kawase T, Okuda K, Momose M, Kato Y, Yoshie H, Burns DM (2001) Enamel matrix derivative (EMDOGAIN) rapidly stimulates phosphorylation of the MAP kinase family and nuclear accumulation of smad2 in both oral epithelial and fibroblastic human cells. J Periodontal Res 36:367–376

    Article  PubMed  Google Scholar 

  36. Saito K, Konishi I, Nishiguchi M, Hoshino T, Fujiwara T (2008) Amelogenin binds to both heparan sulfate and bone morphogenetic protein 2 and pharmacologically suppresses the effect of noggin. Bone 43:371–376. doi:10.1016/j.bone.2008.03.029

    Article  PubMed  Google Scholar 

  37. Quinn JM, Itoh K, Udagawa N, Hausler K, Yasuda H, Shima N, Mizuno A, Higashio K, Takahashi N, Suda T, Martin TJ, Gillespie MT (2001) Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res 16:1787–1794. doi:10.1359/jbmr.2001.16.10.1787

    Article  PubMed  Google Scholar 

  38. Thirunavukkarasu K, Miles RR, Halladay DL, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ, Onyia JE (2001) Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects. J Biol Chem 276:36241–36250. doi:10.1074/jbc.M104319200

    Article  PubMed  Google Scholar 

  39. Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O'Quinn EC, Hart AJ, Biswas S, Patil CA, Lonning S, Mahadevan-Jansen A, Mundy GR (2010) Inhibition of TGF-beta signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res 25:2419–2426. doi:10.1002/jbmr.139

    Article  PubMed  Google Scholar 

  40. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, Niewolna M, Peng XH, Nguyen DH, Ionova-Martin SS, Bracey JW, Hogue WR, Wong DH, Ritchie RO, Suva LJ, Derynck R, Guise TA, Alliston T (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One 4:e5275. doi:10.1371/journal.pone.0005275

    Article  PubMed Central  PubMed  Google Scholar 

  41. Brett PM, Parkar M, Olsen I, Tonetti M (2002) Expression profiling of periodontal ligament cells stimulated with enamel matrix proteins in vitro: a model for tissue regeneration. J Dent Res 81:776–783

    Article  PubMed  Google Scholar 

  42. Elias JA, Zheng T, Whiting NL, Trow TK, Merrill WW, Zitnik R, Ray P, Alderman EM (1994) IL-1 and transforming growth factor-beta regulation of fibroblast-derived IL-11. J Immunol 152:2421–2429

    PubMed  Google Scholar 

  43. Takayanagi K, Osawa G, Nakaya H, Cochran DL, Kamoi K, Oates TW (2006) Effects of enamel matrix derivative on bone-related mRNA expression in human periodontal ligament cells in vitro. J Periodontol 77:891–898. doi:10.1902/jop.2006.050244

    Article  PubMed  Google Scholar 

  44. Hatakeyama J, Sreenath T, Hatakeyama Y, Thyagarajan T, Shum L, Gibson CW, Wright JT, Kulkarni AB (2003) The receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenic pathway is elevated in amelogenin-null mice. J Biol Chem 278:35743–35748. doi:10.1074/jbc.M306284200

    Article  PubMed  Google Scholar 

  45. Tachi K, Takami M, Sato H, Mochizuki A, Zhao B, Miyamoto Y, Tsukasaki H, Inoue T, Shintani S, Koike T, Honda Y, Suzuki O, Baba K, Kamijo R (2011) Enhancement of bone morphogenetic protein-2-induced ectopic bone formation by transforming growth factor-beta1. Tissue Eng Part A 17:597–606. doi:10.1089/ten.TEA.2010.0094

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Catherine Solioz for her skillful technique assistance. This work was supported in part by the Straumann Institute.

Conflict of interest

The authors declare to have no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Gruber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, R., Roos, G., Caballé-Serrano, J. et al. TGF-βRI kinase activity mediates Emdogain-stimulated in vitro osteoclastogenesis. Clin Oral Invest 18, 1639–1646 (2014). https://doi.org/10.1007/s00784-013-1129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1129-6

Keywords

Navigation