Skip to main content

Advertisement

Log in

Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Experimental composite resins with amorphous calcium phosphate (ACP) have the potential to regenerate demineralized tooth structures. The aim of the study was to investigate the effect of the addition of silanized silica nanofillers to the ACP-based composites on their mechanical properties and the kinetics of calcium and phosphate release.

Materials and methods

The test materials comprised 5 wt% (5-ACP) or 10 wt% (10-ACP) of silanized silica admixed to the 40 wt% ACP and 50 or 55 wt% resin. The ACP control (0-ACP) contained 40 wt% ACP and 60 wt% resin. Additionally, composite material CeramX (Dentsply, Germany) was included as control. Three-point bending test was performed to calculate flexural strength and modulus of elasticity. Inductively coupled plasma atomic emission spectroscopy was used for measurement of ion release. The micromorphology of calcium phosphate depositions on composite samples has been qualitatively evaluated using a scanning electron microscope. The results were analyzed using Mann–Whitney and Wilcoxon rank sum tests (α < 0.05).

Results

Ion release was enhanced by the silica fillers, when compared to the 0-ACP. Although not statistically significant, flexural strength of 10-ACP was improved by 46 % compared to 0-ACP. Flexural modulus of 5-ACP was significantly higher than 0-ACP.

Conclusions

The admixture of silanized fillers seems to be a promising approach for the improvement of mechanical and remineralizing properties of ACP composite resins.

Clinical relevance

ACP-based composite resins with modified composition could serve as an effective remineralizing aid as base materials in restorative dental medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skrtic D, Hailer AW, Takagi S, Antonucci JM, Eanes ED (1996) Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res 75:1679–1686

    Article  PubMed  Google Scholar 

  2. Dorozhkin SV (2010) Amorphous calcium (ortho)phosphates. Acta Biomater 6:4457–4475. doi:10.1016/j.actbio.2010.06.031

    Article  PubMed  Google Scholar 

  3. Langhorst SE, O'Donnell JN, Skrtic D (2009) In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater 25:884–891. doi:10.1016/j.dental.2009.01.094

    Article  PubMed Central  PubMed  Google Scholar 

  4. Johns JI, O'Donnell JN, Skrtic D (2010) Selected physicochemical properties of the experimental endodontic sealer. J Mater Sci Mater Med 21:797–805. doi:10.1007/s10856-009-3873-3

    Article  PubMed Central  PubMed  Google Scholar 

  5. O'Donnell JN, Schumacher GE, Antonucci JM, Skrtic D (2009) Structure-composition-property relationships in polymeric amorphous calcium phosphate-based dental composites. Mater(Basel) 2:1929–1959. doi:10.3390/ma2041929

    Google Scholar 

  6. O'Donnell JN, Langhorst SE, Fow MD, Antonucci JM, Skrtic D (2008) Light-cured dimethacrylate-based resins and their composites: comparative study of mechanical strength, water sorption and ion release. J Bioact Compat Polym 23:207–226

    Article  PubMed Central  PubMed  Google Scholar 

  7. O'Donnell JN, Antonucci JM, Skrtic D (2006) Amorphous calcium phosphate composites with improved mechanical properties. J Bioact Compat Polym 21:169–184. doi:10.1177/0883911506064476

    Article  PubMed Central  PubMed  Google Scholar 

  8. Heintze SD, Zimmerli B (2011) Relevance of in vitro tests of adhesive and composite dental materials, a review in 3 parts; part 1: approval requirements and standardized testing of composite materials according to ISO specifications. Schweiz Monatsschr Zahnmed 121:804–816

    PubMed  Google Scholar 

  9. Rodrigues Junior SA, Zanchi CH, Carvalho RV, Demarco FF (2007) Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res 21:16–21

    Article  PubMed  Google Scholar 

  10. Ilie N, Hickel R (2011) Resin composite restorative materials. Aust Dent J 56(Suppl 1):59–66. doi:10.1111/j.1834-7819.2010.01296.x

    Article  PubMed  Google Scholar 

  11. Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13:427–438. doi:10.1007/s00784-009-0258-4

    Article  PubMed  Google Scholar 

  12. O'Donnell JN, Antonucci JM, Skrtic D (2008) Illuminating the role of agglomerates on critical physicochemical properties of amorphous calcium phosphate composites. J Compos Mater 42:2231–2246. doi:10.1177/0021998308094797

    Article  PubMed Central  PubMed  Google Scholar 

  13. Park MS, Eanes ED, Antonucci JM, Skrtic D (1998) Mechanical properties of bioactive amorphous calcium phosphate/methacrylate composites. Dent Mater 14:137–141

    Article  PubMed  Google Scholar 

  14. Skrtic D, Antonucci JM (2007) Effect of chemical structure and composition of the resin phase on vinyl conversion of amorphous calcium phosphate-filled composites. Polym Int 56:497–505. doi:10.1002/pi.2129

    Article  PubMed Central  PubMed  Google Scholar 

  15. Antonucci JM, Fowler BO, Stansbury JW, Weir MD, Skrtic D (2008) Bioactive polymeric ACP composites utilizing ethyl-alpha-hydroxymethylacrylate. Polym Prepr 49:820–821

    Google Scholar 

  16. Antonucci JM, Fowler BO, Weir MD, Skrtic D, Stansbury JW (2008) Effect of ethyl-alpha-hydroxymethylacrylate on selected properties of copolymers and ACP resin composites. J Mater Sci Mater Med 19:3263–3271. doi:10.1007/s10856-008-3463-9

    Article  PubMed Central  PubMed  Google Scholar 

  17. Antonucci JM, Icenogle TB, Regnault WF, Liu DW, O'Donnell JN, Skrtic D (2006) Polymerization shrinkage and stress development in bioactive urethane acrylic resin composites. Polym Prepr 47:498–499

    Article  Google Scholar 

  18. Skrtic D, Antonucci JM, Eanes ED, Brunworth RT (2002) Silica- and zirconia-hybridized amorphous calcium phosphate: effect on transformation to hydroxyapatite. J Biomed Mater Res 59:597–604. doi:10.1002/jbm.10017

    Article  PubMed  Google Scholar 

  19. Skrtic D, Antonucci JM, Eanes ED, Eldelman N (2004) Dental composites based on hybrid and surface-modified amorphous calcium phosphates. Biomaterials 25:1141–1150. doi:10.1016/j.biomaterials.2003.08.001

    Article  PubMed  Google Scholar 

  20. Bowen RL (1956) Use of epoxy resins in restorative materials. J Dent Res 35:360–369

    Article  PubMed  Google Scholar 

  21. Bowen RL (1963) Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc 66:57–64

    PubMed  Google Scholar 

  22. Chen MH (2010) Update on dental nanocomposites. J Dent Res 89:549–560. doi:10.1177/0022034510363765

    Article  PubMed  Google Scholar 

  23. Wilson KS, Zhang K, Antonucci JM (2005) Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials 26:5095–5103. doi:10.1016/j.biomaterials.2005.01.008

    Article  PubMed  Google Scholar 

  24. Yoshida Y, Shirai K, Nakayama Y, Itoh M, Okazaki M, Shintani H, Inoue S, Lambrechts P, Vanherle G, Van Meerbeek B (2002) Improved filler-matrix coupling in resin composites. J Dent Res 81:270–273

    Article  PubMed  Google Scholar 

  25. Calais JG, Soderholm KJ (1988) Influence of filler type and water exposure on flexural strength of experimental composite resins. J Dent Res 67:836–840

    Article  PubMed  Google Scholar 

  26. Skrtic D, Antonucci JM, Eanes ED, Eidelman N (2004) Dental composites based on hybrid and surface-modified amorphous calcium phosphates. Biomaterials 25:1141–1150

    Article  PubMed  Google Scholar 

  27. Xu HH, Weir MD, Sun L, Takagi S, Chow LC (2007) Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J Dent Res 86:378–383

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tjandrawinata R, Irie M, Suzuki K (2005) Effect of 10 wt% spherical silica filler addition on the various properties of conventional and resin-modified glass-ionomer cements. Acta Odontol Scand 63:371–375

    Article  PubMed  Google Scholar 

  29. Xu HH, Sun L, Weir MD, Takagi S, Chow LC, Hockey B (2007) Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites. J Biomed Mater Res B Appl Biomater 81:116–125. doi:10.1002/jbm.b.30644

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tjandrawinata R, Irie M, Suzuki K (2004) Marginal gap formation and fluoride release of resin-modified glass-ionomer cement: effect of silanized spherical silica filler addition. Dent Mater J 23:305–313

    Article  PubMed  Google Scholar 

  31. Skrtic D, Antonucci JM, Liu DW (2006) Ethoxylated bisphenol dimethacrylate-based amorphous calcium phosphate composites. Acta Biomater 2:85–94. doi:10.1016/j.actbio.2005.10.004

    Article  PubMed Central  PubMed  Google Scholar 

  32. Skrtic D, Antonucci JM, Eanes ED (2003) Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol 108:167–182

    Article  Google Scholar 

  33. Hatanaka K, Irie M, Tjandrawinata R, Suzuki K (2006) Effect of spherical silica filler addition on immediate interfacial gap-formation in Class V cavity and mechanical properties of resin-modified glass-ionomer cement. Dent Mater J 25:415–422

    Article  PubMed  Google Scholar 

  34. Tjandrawinata R, Irie M, Yoshida Y, Suzuki K (2004) Effect of adding spherical silica filler on physico-mechanical properties of resin modified glass-ionomer cement. Dent Mater J 23:146–154

    Article  PubMed  Google Scholar 

  35. Tarle Z, Knezevic A, Matosevic D, Skrtic D, Ristic M, Prskalo K, Music S (2009) Degree of vinyl conversion in experimental amorphous calcium phosphate composites. J Mol Struc 924–926:161–165

    Article  Google Scholar 

  36. Marovic D, Tarle Z, Ristic M, Music S, Skrtic D, Hiller K, Schmalz G (2011) Influence of different types of fillers on the degree of conversion of ACP composite resins. Acta Stomal Croat 45:231–238

    Google Scholar 

  37. E L, Irie M, Nagaoka N, Yamashiro T, Suzuki K (2010) Mechanical properties of a resin-modified glass ionomer cement for luting: effect of adding spherical silica filler. Dent Mater J 29:253–261

    Google Scholar 

  38. Hosseinalipour M, Javadpour J, Rezaie H, Dadras T, Hayati AN (2010) Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J Prosthodont 19:112–117. doi:10.1111/j.1532-849X.2009.00530.x

    Article  PubMed  Google Scholar 

  39. Chung KH, Greener EH (1990) Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. J Oral Rehabil 17:487–494

    Article  PubMed  Google Scholar 

  40. Debnath S, Ranade R, Wunder SL, McCool J, Boberick K, Baran G (2004) Interface effects on mechanical properties of particle-reinforced composites. Dent Mater 20:677–686. doi:10.1016/j.dental.2003.12.001

    Article  PubMed  Google Scholar 

  41. Karmaker A, Prasad A, Sarkar NK (2007) Characterization of adsorbed silane on fillers used in dental composite restoratives and its effect on composite properties. J Mater Sci Mater Med 18:1157–1162. doi:10.1007/s10856-007-0145-y

    Article  PubMed  Google Scholar 

  42. Sideridou ID, Karabela MM (2009) Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent Mater 25:1315–1324. doi:10.1016/j.dental.2009.03.016

    Article  PubMed  Google Scholar 

  43. Ilie N, Rencz A, Hickel R (2013) Investigations towards nano-hybrid resin-based composites. Clin Oral Investig 17:185–193. doi:10.1007/s00784-012-0689-1

    Article  PubMed  Google Scholar 

  44. Soderholm KJ, Yang MC, Garcea I (2000) Filler particle leachability of experimental dental composites. Eur J Oral Sci 108:555–560

    Article  PubMed  Google Scholar 

  45. Damen JJ, ten Cate JM (1989) The effect of silicic acid on calcium phosphate precipitation. J Dent Res 68:1355–1359

    Article  PubMed  Google Scholar 

  46. Damen JJ, Ten Cate JM (1992) Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J Dent Res 71:453–457

    Article  PubMed  Google Scholar 

  47. Gajjeraman S, Narayanan K, Hao J, Qin C, George A (2007) Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem 282:1193–1204. doi:10.1074/jbc.M604732200

    Article  PubMed  Google Scholar 

  48. Barnes DH, Jugdaosingh R, Kiamil S, SM B (2011) Shelf life and chemical stability of calcium phosphate coatings applied to poly carbonate urethane substrates. J Biotechnol Biomaterial 1. doi:10.4172/2155- 952X.1000112

  49. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  PubMed  Google Scholar 

  50. Arifuzzaman SM, Rohani S (2004) Experimental study of brushite precipitation. J Cryst Growth 267:624–634. doi:10.1016/j.jcrysgro.2004.04.024

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Ministry of Science, Education and Sports, Republic of Croatia (065-0352851-0410 and 098-0982904-2952), Croatian Science Foundation, Forschungsgemeinschaft Dental, University Hospital Regensburg, University of Regensburg and NIDCR (DE13169). Generous contribution of the fillers from Evonik Degussa (Essen, Germany) and the monomers from Esstech (Essington, PA, USA) and Sigma Aldrich (Milwaukee, WI, USA) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Marovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marovic, D., Tarle, Z., Hiller, K.A. et al. Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate. Clin Oral Invest 18, 783–792 (2014). https://doi.org/10.1007/s00784-013-1044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1044-x

Keywords

Navigation