Skip to main content

Advertisement

Log in

Reproducibility of three-dimensional cephalometric landmarks in cone-beam and low-dose computed tomography

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study is to compare the reproducibility of three-dimensional cephalometric landmarks on three-dimensional computed tomography (3D-CT) surface rendering using clinical protocols based on low-dose (35-mAs) spiral CT and cone-beam CT (I-CAT). The absorbed dose levels for radiosensitive organs in the maxillofacial region during exposure in both 3D-CT protocols were also assessed.

Materials and methods

The study population consisted of ten human dry skulls examined with low-dose CT and cone-beam CT. Two independent observers identified 24 cephalometric anatomic landmarks at 13 sites on the 3D-CT surface renderings using both protocols, with each observer repeating the identification 1 month later. A total of 1,920 imaging measurements were performed. Thermoluminescent dosimeters were placed at six sites around the thyroid gland, the submandibular glands, and the eyes in an Alderson phantom to measure the absorbed dose levels.

Results

When comparing low-dose CT and cone-beam CT protocols, the cone-beam CT protocol proved to be significantly more reproducible for four of the 13 anatomical sites. There was no significant difference between the protocols for the other nine anatomical sites. Both low-dose and cone-beam CT protocols were equivalent in dose absorption to the eyes and submandibular glands. However, thyroid glands were more irradiated with low-dose CT.

Conclusions

Cone-beam CT was more reproducible and procured less irradiation to the thyroid gland than low-dose CT.

Clinical relevance

Cone-beam CT should be preferred over low-dose CT for developing three-dimensional bony cephalometric analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grayson B, Cutting C, Bookstein FL, Kim H, McCarthy JG (1988) The three-dimensional cephalogram: theory, technique, and clinical application. Am J Orthod Dentofacial Orthop 94:327–337

    Article  PubMed  Google Scholar 

  2. Adams GL, Gansky SA, Miller AJ, Harrell WE Jr, Hatcher DC (2004) Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop 126:397–409

    Article  PubMed  Google Scholar 

  3. Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A (2006) A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system. J Craniofac Surg 17:314–325

    Article  PubMed  Google Scholar 

  4. Richtsmeier JT, Paik CH, Elfert PC, Cole TM 3rd, Dahlman HR (1995) Precision, repeatability, and validation of the localization of cranial landmarks using computed tomography scans. Cleft Palate Craniofac J 32:217–227

    Article  PubMed  Google Scholar 

  5. Donatsky O, Hillerup S, Bjorn-Jorgensen J, Jacobsen PU (1992) Computerized cephalometric orthognathic surgical simulation, prediction and postoperative evaluation of precision. Int J Oral Maxillofac Surg 21:199–203

    Article  PubMed  Google Scholar 

  6. Cavalcanti MG, Haller JW, Vannier MW (1999) Three-dimensional computed tomography landmark measurement in craniofacial surgical planning: experimental validation in vitro. J Oral Maxillofac Surg 57:690–694

    Article  PubMed  Google Scholar 

  7. Cavalcanti MG, Rocha SS, Vannier MW (2004) Craniofacial measurements based on 3D-CT volume rendering: implications for clinical applications. Dentomaxillofac Radiol 33:170–176

    Article  PubMed  Google Scholar 

  8. Farkas LG, Katic MJ, Forrest CR, Alt KW, Bagic I, Baltadjiev G, Cunha E, Cvicelova M, Davies S, Erasmus I, Gillet-Netting R, Hajnis K, Kemkes-Grottenthaler A, Khomyakova I, Kumi A, Kgamphe JS, Kayo-Daigo N, Le T, Malinowski A, Negasheva M, Manolis S, Ogeturk M, Parvizrad R, Rosing F, Sahu P, Sforza C, Sivkov S, Sultanova N, Tomazo-Ravnik T, Toth G, Uzun A, Yahia E (2005) International anthropometric study of facial morphology in various ethnic groups/races. J Craniofac Surg 16:615–646

    Article  PubMed  Google Scholar 

  9. Delaire J, Schendel SA, Tulasne JF (1981) An architectural and structural craniofacial analysis: a new lateral cephalometric analysis. Oral Surg Oral Med Oral Pathol 52:226–238

    Article  PubMed  Google Scholar 

  10. Olszewski R, Zech F, Cosnard G, Nicolas N, Macq B, Reychler H (2007) 3D CT cephalometric craniofacial analysis: experimental validation in vitro. Int J Oral Maxillofac Surg 36:828–834

    Article  PubMed  Google Scholar 

  11. Olszewski R, Reychler H, Cosnard G, Denis JM, Vynckier S, Zech F (2008) Accuracy of three-dimensional (3D) craniofacial cephalometric landmarks on low-dose 3D computed tomography. Dentomaxillofac Radiol 37:261–267

    Article  PubMed  Google Scholar 

  12. Connnor SEJ, Arscott T, Berry J, Greene L, O’Gorman R (2007) Precision and accuracy of low-dose CT protocols in the evaluation of skull landmarks. Dentomaxillofac Radiol 36:270–276

    Article  Google Scholar 

  13. De Vos W, Casselman J, Swennen GR (2009) Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 38:609–625

    Article  PubMed  Google Scholar 

  14. Olszewski R, Tanesy O, Cosnard G, Zech F, Reychler H (2010) Reproducibility of osseous landmarks used for computed tomography based three-dimensional cephalometric analyses. J Craniomaxillofac Surg 38:214–221

    Article  PubMed  Google Scholar 

  15. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comp Graph 21:163–169

    Article  Google Scholar 

  16. McCullagh P (1983) Quasi-likelihood functions. Ann Stat 11:59–67

    Article  Google Scholar 

  17. Chaganty NR, Shults J (1999) On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter. J Stat Plan Inf 76:145–161

    Article  Google Scholar 

  18. Morel JG, Bokossa MC, Neerchal NK (2003) Small sample correction for the variance of GEE estimators. Biometric J 45:395–409

    Article  Google Scholar 

  19. Larzelere RE, Mulaik SA (1977) Single-sample tests for many correlations. Psychol Bull 84:557–569

    Article  Google Scholar 

  20. Van Cauter S, Okkerse W, Brijs G, De Beule M, Braem M, Verhegghe B (2010) A new method for improved standardisation in three-dimensional computed tomography cephalometry. Comput Methods Biomech Biomed Engin 13:59–69

    Article  PubMed  Google Scholar 

  21. Enlow DH (1975) Handbook of facial growth. WB Saunders, Philadelphia

    Google Scholar 

  22. Ludlow JB, Davies-Ludlow LE, Brooks SL (2003) Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofac Radiol 32:229–234

    Article  PubMed  Google Scholar 

  23. Van Vlijmen OJ, Maal TJ, Berge SJ, Bronkhorst EM, Katsaros C, Kuijpers-Jagtman AM (2009) A comparison between two-dimensional and three-dimensional cephalometry on frontal radiographs and on cone beam computed tomography scans of human skulls. Eur J Oral Sci 117:300–305

    Article  PubMed  Google Scholar 

  24. Schulze D, Heiland M, Thurmann H, Adam G (2004) Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol 33:83–86

    Article  PubMed  Google Scholar 

  25. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB (2006) Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3 G and i-CAT. Dentomaxillofac Radiol 35:219–226

    Article  PubMed  Google Scholar 

  26. Van Vlijmen OJC, Rangel FA, Bergé SJ, Bronkhorst EM, Becking AG, Kuijpers-Jagtman AM (2010) Measurements on 3D models of human skulls derived from two different cone beam CT scanners. Clin Oral Investig. doi:10.1007/s00784-010-0440-80

  27. Boetticher H, Lachmund J, Looe HK, Hoffmann W, Poppe B (2008) 2007 recommendations of the ICRP change basis for estimation of the effective dose: what is the impact on radiation dose assessment of patient and personnel? Rofo 180:391–395

    Article  PubMed  Google Scholar 

  28. Mah JK, Hunag JC, Choo H (2010) Practical applications of cone-beam computed tomography in orthodontics. J Am Dent Assoc 141:7S–13S

    PubMed  Google Scholar 

  29. Cevidanes L, Baccetti T, Franchi L, McNamara JA Jr, De Clerck H (2010) Comparison of two protocols for maxillary protraction: bone anchors versus face mask with rapid maxillary expansion. Angle Orthod 80:799–806

    Article  PubMed  Google Scholar 

  30. Cevidanes LH, Heymann G, Cornelis MA, De Clerck HJ, Tulloch JF (2009) Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofacial Orthop 136:94–99

    Article  PubMed  Google Scholar 

  31. Garib DG, Yatabe MS, Ozawa TO, da Silva Filho OG (2011) Alveolar bone morphology in patients with bilateral complete cleft lip and palate in the mixed dentition: CBCT evaluation. Cleft Palate Craniofac J (in press)

Download references

Conflict of interest

The authors declare no conflict of interest.

Disclosure

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Olszewski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1556 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olszewski, R., Frison, L., Wisniewski, M. et al. Reproducibility of three-dimensional cephalometric landmarks in cone-beam and low-dose computed tomography. Clin Oral Invest 17, 285–292 (2013). https://doi.org/10.1007/s00784-012-0688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0688-2

Keywords

Navigation