Skip to main content

Advertisement

Log in

The evaluation of the effects of hyperbaric oxygen therapy on new bone formation obtained by distraction osteogenesis in terms of consolidation periods

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the effect of hyperbaric oxygen therapy on new bone formation obtained by distraction osteogenesis in long- or short-term consolidation periods.

Materials and methods

Twenty-four rabbits were used. The animals were divided into two groups of 12 animals each, and vertical mandibular distraction osteogenesis was performed. Hyperbaric oxygen therapy was administered in the first group. Each group was subdivided into two subgroups according to the 30- and 60-day consolidation period. The acquired bone amounts were compared according to their radiographic density and histopathology.

Results

Histopathologically, in the experimental group, callus formation was increased and the new bone was more mineralized. According to the radiographic densitometry analyses, there were no statistically significant differences between the 30-day consolidated subgroups of the experimental group and the 60-day consolidated subgroup of the control group (p = 0.873).

Conclusion

Hyperbaric oxygen therapy can be used to increase the quality and the quantity of bone and to decrease the maturation time which may shorten the consolidation period of vertical distraction osteogenesis.

Clinical relevance

The effect of hyperbaric oxygen therapy on vertical distraction osteogenesis procedure according to consolidation periods has been determined. Hyperbaric oxygen therapy may increase the quality and the quantity of bone and shorten the consolidation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carls FR, Jackson IT, Topf JS (1997) Distraction osteogenesis for lengthening of hard palate: part I. A possible new treatment concept for velopharyngeal incompetence: experimental study in dogs. Plast Reconstr Surg 100:1635–1647

    Article  PubMed  Google Scholar 

  2. Cohen SR, Burstein FD, Stewart MB, Rathburn MA (1997) Maxillary–midface distraction in children with cleft lip and palate: a preliminary report. Plast Reconstr Surg 99:1421–1428

    Article  PubMed  Google Scholar 

  3. Cohen SR, Rutrick RE, Burstein FD (1995) Distraction osteogenesis of the human craniofacial skeleton: initial experience with a new distraction system. J Craniofac Surg 6:368–374

    Article  PubMed  Google Scholar 

  4. Cope JB, Samchukov ML, Cherkashin AM (1999) Mandibular distraction osteogenesis: a historic perspective and future direction. Am J Orthod Dentofac Orthop 115:448–460

    Article  Google Scholar 

  5. Michieli S, Miotti B (1977) Lengthening of mandibular body by gradual surgical orthodontic distraction. J Oral Surg 35:187–192

    PubMed  Google Scholar 

  6. Clark CL, Strider J, Hall C, Ferguson HW, Armstrong KL, Runner RR, Baur DA (2006) Distraction osteogenesis in ırradiated rabbit mandibles with adjunctive hyperbaric oxygen therapy. J Oral Maxillofac Surg 64:589–593

    Article  PubMed  Google Scholar 

  7. Welch R, Lewis D (1999) Distraction osteogenesis. Vet Clin North Am Small Anim Pract 29:1187–1205

    PubMed  Google Scholar 

  8. Ilizarov GA, Soybelman LM, Chirkova AM (1970) Some roentgenographic and morphologic data on regeneration of bone tissue in experimental distraction epiphysiolysis. Orthop Travmatol Protez Mar 31:26–30

    Google Scholar 

  9. Muhonen A, Haaparanta M, Grönroos T (2004) Osteoblastic activity and neoangiogenesis in distracted bone of irradiated rabbit mandible with or without hyperbaric oxygen treatment. Int J Oral Maxillofac Surg 33:173–178

    Article  PubMed  Google Scholar 

  10. Panikarovsky VV, Grigorian AS, Kaganovich SI, Osipian EM, Antipova ZP (1982) Characteristics of mandibular reparative osteogenesis under compression–distraction osteosynthnesis: an experimental study. Stomatology 61:21–25

    Google Scholar 

  11. Rachmiel A, Potparic Z, Jackson IT, Sugihara T, Clayman L, Topf JS, Forté RA (1993) Midface advancement by gradual distraction. Br J Plast Surg 46:201–207

    Article  PubMed  Google Scholar 

  12. Rachmiel A, Levy M, Laufer D, Clayman L, Jackson IT (1996) Multiple segmental gradual distraction of facial skeleton: an experimental study. Ann Plast Surg 36:52–59

    Article  PubMed  Google Scholar 

  13. Hidding J, Lazar F, Zöller JE (1999) Initial outcome of vertical distraction osteogenesis of the atrophic alveolar ridge. Mund Kiefer Gesichtschir 3:79–83

    Article  Google Scholar 

  14. Rachmiel A, Srouji S, Peled M (2001) Alveolar ridge augmentation by distraction osteogenesis. Int J Oral Maxillofac Surg 30:510–517

    Article  PubMed  Google Scholar 

  15. Goupil MT, Steed DL, Kolodny SC (1978) Hyperbaric oxygen in the adjunctive treatment of chronic osteomyelitis of the mandible: report of case. J Oral Surg 36:138–140

    PubMed  Google Scholar 

  16. Thom SR, Ohnishi ST, Ischiropoulos H (1994) Nitric oxide released by platelets inhibits neutrophil b2 ıntegrin function following acute carbon monoxide poisoning. Toxicol Appl Pharmacol 128:105–110

    Article  PubMed  Google Scholar 

  17. Tompach PC, Lew D, Stoll JL (1997) Cell response to hyperbaric oxygen treatment. Int J Oral Maxillofac Surg 26:82–86

    Article  PubMed  Google Scholar 

  18. Knighton DR, Silver IA, Hunt TK (1981) Regulation of wound healing angiogenesis. Effect of oxygen gradients and ınspired oxygen concentration. Surgery 990:262–270

    Google Scholar 

  19. Hunt TK, Zederfeldt B, Goldstick TK (1969) Oxygen and healing. Am J Surg 118:521–525

    Article  PubMed  Google Scholar 

  20. Ueng SW, Lee SS, Lin SS, Wang CR, Liu SJ, Yang HF, Tai CL, Shih CH (1998) Bone healing of tibial lengthening is enhanced by hyperbaric oxygen therapy: a study of bone mineral density and torsional strength on rabbits. J Trauma 44:676–681

    Article  PubMed  Google Scholar 

  21. Salgado CJ, Raju A, Licata L, Patel M, Rojavin Y, Wasielewski S, Diarra C, Gordon A, Norcross A, Kent KA (2009) Effects of hyperbaric oxygen therapy on an accelerated rate of mandibular distraction osteogenesis. J Plast Reconstr Aesthet Surg 62:1568–1572

    Article  PubMed  Google Scholar 

  22. Schmidt BL, Kung L, Jones C, Casap N (2002) Induced osteogenesis by periosteal distraction. J Oral Maxillofac Surg 60:1170–1175

    Article  PubMed  Google Scholar 

  23. Cedars MG, Linck DL, Chin M, Toth BA (1999) Advancement of the midface using distraction techniques. Plast Reconstr Surg 103:429–440

    Article  PubMed  Google Scholar 

  24. Farhadieh RD, Gianoutsos MP, Dickinson R, Walsh WR (2000) Effect of distraction rate on biomechanical mineralization and histologic properties of an ovine mandible model. Plast Reconstr Surg 105:889–895

    Article  PubMed  Google Scholar 

  25. Ilizarov GA (1989) The tension–stress effect on the genesis and growth of tissues. Part I. The ınfluence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 238:249–281

    PubMed  Google Scholar 

  26. Okubo Y, Bessho K, Fujimura K (2001) Effect of hyperbaric oxygenation on bone induced by recombinant human bone morphogenetic protein—2. Br J Oral Maxillofac Surg 39:91–95

    Article  PubMed  Google Scholar 

  27. Cope JB, Samchukov ML (2001) Mineralization dynamics of regenerate bone during mandibular osteodistraction. Int J Oral Maxillofac Surg 30:234–242

    Article  PubMed  Google Scholar 

  28. Sawai T, Niimi A, Takahashi H, Ueda M (1996) Histologic study of the effect of HBO on autogenous free bone grafts. J Oral Maxillofac Surg 54:975–981

    Article  PubMed  Google Scholar 

  29. Eralp L, Ozkan K, Kocaoglu M, Aktas S, Zihni M, Türker M, Ozkan FU (2007) Effects of hyperbaric oxygen therapy on distraction osteogenesis. Adv Ther 24:326–332

    Article  PubMed  Google Scholar 

  30. King GJ, Liu ZJ, Wang LL, Chiu IY, Whelan MF, Huang GJ (2003) Effect of distraction rate and consolidation period on bone density following mandibular osteodistraction in rats. Arch Oral Biol 48:299–308

    Article  PubMed  Google Scholar 

  31. Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C (2001) Craniofacial distraction osteogenesis: a review of the literature: part 1: clinical studies. Int J Oral Maxillofac Surg 30:89–103

    Article  PubMed  Google Scholar 

  32. Kudoh A (2008) Effects of hyperbaric oxygen treatment on healing of maxillary distraction osteogenesis in beagle dogs. Kokubyo Gakkai Zasshi 75:55–64

    PubMed  Google Scholar 

  33. Dahlin C, Linde A, Röckert H (1993) Stimulation of early bone formation by the combination of an osteopromotive membrane technique and hyperbaric oxygen. Scand J Plast Reconstr Hand Surg 27:103–108

    Article  Google Scholar 

  34. Orhan TC, Daphne H, Melisa KB (1994) Oxygen tension regulates osteoblast function. Am J Orthod Dentofac Orthop 105:457–463

    Article  Google Scholar 

  35. Sencimen M, Aydintug YS, Ortakoglu K, Karslioglu Y, Gunhan O, Gunaydin Y (2007) Histomorphometrical analysis of new bone obtained by distraction osteogenesis and osteogenesis by periosteal distraction in rabbits. Int J Oral Maxillofac Surg 36:235–242

    Article  PubMed  Google Scholar 

  36. Eliasson ST, Haasken B (1979) Radiopacity of impression materials. Oral Surg Oral Med Oral Pathol 47:485–491

    Article  PubMed  Google Scholar 

  37. Okcu KM, Sencimen M, Karacay S, Bengi AO, Ors F, Dogan N, Gökce S (2009) Anterior segmental distraction of the hypoplastic maxilla by a tooth borne device: a study on the movement of the segment. Int J Oral Maxillofac Surg 38:817–822

    Article  PubMed  Google Scholar 

  38. Karacay S, Akin E, Okcu KM, Bengi AO, Altug HA (2005) Mandibular distraction with MD-DOS device. Angle Orthod 75:685–693

    PubMed  Google Scholar 

  39. Oduncuoglu BF, Alaaddinoglu EE, Oguz Y, Uckan S, Erkut S (2011) Repositioning a prosthetically unfavorable implant by vertical distraction osteogenesis. J Oral Maxillofac Surg 69:1628–1632

    Article  PubMed  Google Scholar 

  40. Klesper B, Lazar F, Siessegger M, Hidding J, Zöller JE (2002) Vertical distraction osteogenesis of fibula transplants for mandibular reconstruction—a preliminary study. J Craniomaxillofac Surg 30:280–285

    PubMed  Google Scholar 

  41. Li D, Liu Y, Ma W, Song Y (2011) Review of ectodermal dysplasia: case report on treatment planning and surgical management of oligodontia with implant restorations. Implant Dent 20:328–330

    Article  PubMed  Google Scholar 

  42. Tuzuner-Oncul AM, Kisnisci RS (2011) Response of ramus following vertical lengthening with distraction osteogenesis. J Craniomaxillofac Surg 39:420–424

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None

Funding source

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Gulses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutlu, I., Aydintug, Y.S., Kaya, A. et al. The evaluation of the effects of hyperbaric oxygen therapy on new bone formation obtained by distraction osteogenesis in terms of consolidation periods. Clin Oral Invest 16, 1363–1370 (2012). https://doi.org/10.1007/s00784-011-0644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-011-0644-6

Keywords

Navigation