Skip to main content

Advertisement

Log in

The effects of compression on the image quality of digital panoramic radiographs

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Size reduction through compression is an important issue that needs to be investigated for possible effects on image quality. The aim of the present study was to evaluate the subjective image quality of digital panoramic radiographs which were lossless and lossy compressed for the visualization of various anatomical structures. Fifty-five digital panoramic radiographs in Tagged Image File Format (Tiff) were used in the study. Two types of lossy (Joint Photographic Experts Group (Jpeg)) and one type of lossless (Lempel–Ziv–Welch) compression were applied to the original radiographs. These radiographs were evaluated by two observers separately for the visibility of some anatomical structures with visual grading. Mean quality number for each radiograph was obtained. The differences between the mean quality numbers in each compression and original image mode were evaluated with Friedman test. Pair-wise comparisons revealed that there were statistically significant differences between all groups (p = 0.000) for all comparisons except for Jpeg_1 and Jpeg_2 groups. Kappa statistics was used to evaluate inter- and intra-observer agreements. Intra-observer agreements were ranging from 0.229 to 1.000 and inter-observer agreements were ranging from 0.154 to 1.000. The observers had better inter- and intra-observer agreements in highly compressed Jpeg_1 images. The anatomical structures evaluated in this study had better visibility in Tiff images than Jpeg images except for mandibular canal and mental foramen. While Jpeg compressed images offer high inter- and intra-observer agreements, the visibility of anatomical structures are better in Tiff images except for mandibular canal and mental foramen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van der Stelt PF (2005) Filmless imaging: the uses of digital radiography in dental practice. J Am Dent Assoc 136:1379–1387

    PubMed  Google Scholar 

  2. Farman AG, Jacobs WR (2007) Digital options for panoramic radiology. In: Farman AG (ed) Panoramic radiology seminars on maxillofacial imaging and interpretation. Springer, Berlin Heidelberg, pp 7–14

    Google Scholar 

  3. Farman AG (2007) Getting the most out of panoramic radiographic interpretation. In: Farman AG (ed) Panoramic radiology seminars on maxillofacial imaging and interpretation. Springer, Berlin Heidelberg, pp 1–5

    Google Scholar 

  4. Boeddinghaus R, Whyte A (2008) Current concepts in maxillofacial imaging. Eur J Radiol 66(3):396–418

    Article  PubMed  Google Scholar 

  5. Lurie AG (2009) Panoramic imaging. In: White SC, Pharoah MC (eds) Oral radiology principles and interpretation, 6th edn. Mosby, St. Louis, pp 175–190

    Google Scholar 

  6. Fidler A, Likar B, Lossy SU (2006) JPEG compression: easy to compress, hard to compare. Dentomaxillofacial Radiol 35:67–73

    Article  Google Scholar 

  7. Fidler A, Skaleric U, Likar B (2007) The effect of image content on detail preservation and file size reduction in lossy compression. Dentomaxillofac Radiol 36:387–392

    Article  PubMed  Google Scholar 

  8. Angelopoulos C, Bedard A, Katz JO, Karamanis S, Parissis N (2004) Digital panoramic radiography: an overview. Semin Orthod 10:194–203

    Article  Google Scholar 

  9. Ludewig E, Richter A, Frame M (2010) Diagnostic imaging—evaluating image quality using visual grading characteristic (VGC) analysis. Vet Res Commun 34:473–479

    Article  PubMed  Google Scholar 

  10. Chan YH (2003) Biostatistics 102: quantitative data—parametric & non-parametric tests. Singap Med J 44:391–396

    Google Scholar 

  11. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  Google Scholar 

  12. Fleiss JL (1981) Statistical methods for rates and proportions, 2nd edn. Wiley, New York

    Google Scholar 

  13. Seeram E (2006) Irreversible compression in digital radiology. A literature review. Radiography 12:45–59

    Article  Google Scholar 

  14. Persons K, Palisson P, Manduca A, Erickson BJ, Savcenko V (1997) An analytical look at the effects of compression on medical images. J Digit lmaging 10(3 suppl 1):60–66

    Article  Google Scholar 

  15. Versteeg CH, Sanderink GCH, van der Stelt PF (1997) Efficacy of digital intra-oral radiography in clinical dentistry. J Dent 25:215–224

    Article  PubMed  Google Scholar 

  16. Wenzel A, Gotfredsen E, Borg E, Gröndahl HG (1996) Impact of lossy image compression on accuracy of caries detection in digital images taken with a storage phosphor system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 81:351–355

    Article  PubMed  Google Scholar 

  17. Pabla T, Ludlow JB, Tyndall DA, Platin E, Abreu M Jr (2003) Effect of data compression on proximal caries detection: observer performance with DenOptix photostimulable phosphor images. Dentomaxillofac Radiol 32:45–49

    Article  PubMed  Google Scholar 

  18. Koenig L, Parks E, Analoui M, Eckert G (2004) The impact of image compression on diagnostic quality of digital images for detection of chemically-induced periapical lesions. Dentomaxillofac Radiol 33:37–43

    Article  PubMed  Google Scholar 

  19. Eraso FE, Analoui M, Watson AB, Rebeschini R (2002) Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:621–625

    Article  PubMed  Google Scholar 

  20. Hwang K, You SH (2010) Analysis of facial bone fractures: an 11-year study of 2,094 patients. Indian J Plast Surg 43:42–48

    Article  PubMed  Google Scholar 

  21. Dolan KD, Jacoby CG, Smoker WRK (1984) The radiology of facial fractures. Radiographics 4:577–663

    Google Scholar 

  22. Bollen AM, Taguchi A, Hujoel PP, Hollender LG (2000) Case-control study on self-reported osteoporotic fractures and mandibular cortical bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90:518–524

    Article  PubMed  Google Scholar 

  23. Liu T, Xia B, Gu Z (2009) Inferior alveolar canal course: a radiographic study. Clin Oral Implant Res 20:1212–1218

    Article  Google Scholar 

  24. Greenstein G, Tarnow D (2006) The mental foramen and nerve: clinical and anatomical factors related to dental implant placement: a literature review. J Periodontol 77:1933–1943

    Article  PubMed  Google Scholar 

  25. Levy FE, Smith RW, Odland RM, Marentette LJ (1991) Monocortical miniplate fixation of mandibular angle fractures. Arch Otolaryngol Head Neck Surg 117:149–154

    Article  PubMed  Google Scholar 

  26. Ruprecht A, Lam EWN (2008) Paranasal sinuses. In: White SC, Pharoah MC (eds) Oral radiology principles and interpretation, 6th edn. Mosby, St. Louis, pp 506–525

    Google Scholar 

  27. Tyndall DA, Matteson SR (1985) Radiographic appearance and population distribution of the pneumatized articular eminence of the temporal bone. J Oral Maxillofac Surg 43:493–497

    Article  PubMed  Google Scholar 

  28. Petrikowski CG (2008) Diagnostic imaging of the temporomandibular joint. In: White SC, Pharoah MC (eds) Oral radiology principles and interpretation, 6th edn. Mosby, St. Louis, pp 473–505

    Google Scholar 

  29. Pham D, Jonasson G, Kiliaridis S (2010) Assessment of trabecular pattern on periapical and panoramic radiographs: a pilot study. Acta Odontol Scand 68:91–97

    Article  PubMed  Google Scholar 

  30. Ivanauskaite D, Lindh C, Rangne K, Rohlin M (2006) Comparison between Scanora panoramic radiography and bitewing radiography in the assessment of marginal bone tissue. Stomatologija 8:9–15

    PubMed  Google Scholar 

  31. Ríos-Santos JV, Ridao-Sacie C, Bullón P, Fernández-Palacín A, Segura-Egea JJ (2010) Assessment of periapical status: a comparative study using film-based periapical radiographs and digital panoramic images. Med Oral Patol Oral Cir Bucal 15(6):e952–e956

    Article  PubMed  Google Scholar 

  32. Gijbels F, De Meyer AM, Bou Serhal C, Van den Bossche C, Declerck J, Persoons M, Jacobs R (2000) The subjective image quality of direct digital and conventional panoramic radiography. Clin Oral Invest 4(3):162–167

    Article  Google Scholar 

  33. Gijbels F, Sanderink G, Pauwels H, Jacobs R (2004) Subjective image quality of digital panoramic radiographs displayed on monitor and printed on various hardcopy media. Clin Oral Invest 8(1):25–29

    Article  Google Scholar 

  34. Molander B, Gröndahl HG, Ekestubbe A (2004) Quality of film-based and digital panoramic radiography. Dentomaxillofac Radiol 33(1):32–36

    Article  PubMed  Google Scholar 

  35. Niimi T, Imai K, Ikeda M, Maeda H (2006) A method of clustering observers with different visual characteristics. Eur J Radiol 571:158–161

    Article  Google Scholar 

  36. Obuchowski NA, Zepp RC (1996) Simple steps for improving multiple-reader studies in radiology. Am J Roentgenol 166:517–521

    Google Scholar 

  37. Hintze H, Frydenberg M, Wenzel A (2003) Influence of number of surfaces and observers on statistical power in a multiobserver ROC radiographic caries detection study. Caries Res 37:200–205

    Article  PubMed  Google Scholar 

  38. Schulze R, Krummenauer F, Schalldach F, d'Hoedt B (2000) Precision and accuracy of measurements in digital panoramic radiography. Dentomaxillofacial Radiology 29:52–56

    Article  PubMed  Google Scholar 

  39. Mileman PA, van den Hout WB (2002) Comparing the accuracy of Dutch dentists and dental students in the radiographic diagnosis of dentinal caries. Dentomaxillofac Radiol 31:7–14

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Füsun Yasar.

Electronic supplemental materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasar, F., Yesilova, E. & Apaydın, B. The effects of compression on the image quality of digital panoramic radiographs. Clin Oral Invest 16, 719–726 (2012). https://doi.org/10.1007/s00784-011-0587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-011-0587-y

Keywords

Navigation