Skip to main content

Advertisement

Log in

Influence of different cusp coverage methods for the extension of ceramic inlays on marginal integrity and enamel crack formation in vitro

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

No information is available to date about cusp design of thin (1.0 mm) non-functional cusps and its influence upon (1) marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and (2) crack formation of dental tissues. The aim of this in vitro study was to investigate the effect of cusp coverage of thin non-functional cusps on marginal integrity and enamel crack formation. CI and PCC preparations were performed on extracted human molars. Non-functional cusps were adjusted to 1.0-mm wall thickness and 1.0-mm wall thickness with horizontal reduction of about 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were adhesively luted with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading. Marginal integrity was assessed by evaluating dye penetration after thermal cycling and mechanical loading. Enamel cracks were documented under a reflective-light microscope. The data were statistically analysed with the Mann–Whitney U test, the Fishers exact test (α = 0.05) and the error rates method. PCC with horizontal reduction of non-functional cusps showed statistically significant less microleakage than PCC without such a cusp coverage. Preparation designs with horizontal reduction of non-functional cusps showed a tendency to less enamel crack formation than preparation designs without cusp coverage. Thin non-functional cusp walls of adhesively bonded restorations should be completely covered or reduced to avoid enamel cracks and marginal deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abou-Rass M (1983) Crack lines: the precursors of tooth fractures—their diagnosis and treatment. Quintessence Int Dent Dig 14:437–447

    PubMed  Google Scholar 

  2. Arola D, Huang MP (2000) The influence of simultaneous mechanical and thermal loads on the stress distribution in molars with amalgam restorations. J Mater Sci Mater Med 11:133–140

    Article  PubMed  Google Scholar 

  3. Bajaj D, Nazari A, Eidelman N, Arola DD (2008) A comparison of fatigue crack growth in human enamel and hydroxyapatite. Biomaterials 29:4847–4854

    Article  PubMed  Google Scholar 

  4. Bortolotto T, Onisor I, Krejci I (2007) Proximal direct composite restorations and chairside CAD/CAM inlays: marginal adaptation of a two-step self-etch adhesive with and without selective enamel conditioning. Clin Oral Investig 11:35–43

    Article  PubMed  Google Scholar 

  5. Bremer BD, Geurtsen W (2001) Molar fracture resistance after adhesive restoration with ceramic inlays or resin-based composites. Am J Dent 14:216–220

    PubMed  Google Scholar 

  6. Burke FJ (1992) Tooth fracture in vivo and in vitro. J Dent 20:131–139

    Article  PubMed  Google Scholar 

  7. Burke FJ, Wilson NH, Watts DC (1994) Fracture resistance of teeth restored with indirect composite resins: the effect of alternative luting procedures. Quintessence Int 25:269–275

    PubMed  Google Scholar 

  8. Clark DJ, Sheets CG, Paquette JM (2003) Definitive diagnosis of early enamel and dentin cracks based on microscopic evaluation. J Esthet Restor Dent 15:391–401

    Article  PubMed  Google Scholar 

  9. Denehy GE, Torney DL (1976) Internal enamel reinforcement through micromechanical bonding. J Prosthet Dent 36:171–175

    Article  PubMed  Google Scholar 

  10. Federlin M, Schmidt S, Hiller KA, Thonemann B, Schmalz G (2004) Partial ceramic crowns: influence of preparation design and luting material on internal adaptation. Oper Dent 29:560–570

    PubMed  Google Scholar 

  11. Federlin M, Sipos C, Hiller KA, Thonemann B, Schmalz G (2005) Partial ceramic crowns. Influence of preparation design and luting material on margin integrity—a scanning electron microscopic study. Clin Oral Investig 9:8–17

    Article  PubMed  Google Scholar 

  12. Federlin M, Wagner J, Manner T, Hiller KA, Schmalz G (2007) Three-year clinical performance of cast gold vs ceramic partial crowns. Clin Oral Investig 11:345–352

    Article  PubMed  Google Scholar 

  13. Fonseca RB, Correr-Sobrinho L, Fernandes-Neto AJ, Quagliatto PS, Soares CJ (2008) The influence of the cavity preparation design on marginal accuracy of laboratory-processed resin composite restorations. Clin Oral Investig 12:53–59

    Article  PubMed  Google Scholar 

  14. Frankenberger R, Kramer N, Lohbauer U, Nikolaenko SA, Reich SM (2007) Marginal integrity: is the clinical performance of bonded restorations predictable in vitro? J Adhes Dent 9(Suppl 1):107–116

    PubMed  Google Scholar 

  15. Geurtsen W, Schwarze T, Gunay H (2003) Diagnosis, therapy, and prevention of the cracked tooth syndrome. Quintessence Int 34:409–417

    PubMed  Google Scholar 

  16. Habekost LV, Camacho GB, Pinto MB, Demarco FF (2006) Fracture resistance of premolars restored with partial ceramic restorations and submitted to two different loading stresses. Oper Dent 31:204–211

    Article  PubMed  Google Scholar 

  17. Hickel R, Manhart J (2001) Longevity of restorations in posterior teeth and reasons for failure. J Adhes Dent 3:45–64

    PubMed  Google Scholar 

  18. Kidd EA (1976) Microleakage: a review. J Dent 4:199–206

    Article  PubMed  Google Scholar 

  19. Kramer N, Frankenberger R (2005) Clinical performance of bonded leucite-reinforced glass ceramic inlays and onlays after eight years. Dent Mater 21:262–271

    Article  PubMed  Google Scholar 

  20. Kramer N, Taschner M, Lohbauer U, Petschelt A, Frankenberger R (2008) Totally bonded ceramic inlays and onlays after eight years. J Adhes Dent 10:307–314

    PubMed  Google Scholar 

  21. Krejci I, Reich T, Lutz F (2004) In-vitro-Testverfahren zur evaluation dentaler Restaurationssysteme. 3. Korrelation mit in-vivo-Resultaten. Schweiz Monatsschr Zahnmed 100:1445–1449

    Google Scholar 

  22. Lin CL, Chang YH, Chang WJ, Cheng MH (2006) Evaluation of a reinforced slot design for CEREC system to restore extensively compromised premolars. J Dent 34:221–229

    Article  PubMed  Google Scholar 

  23. Lloyd BA, McGinley MB, Brown WS (1978) Thermal stress in teeth. J Dent Res 57:571–582

    PubMed  Google Scholar 

  24. Lohbauer U, Kramer N, Petschelt A, Frankenberger R (2008) Correlation of in vitro fatigue data and in vivo clinical performance of a glass ceramic material. Dent Mater 24:39–44

    Article  PubMed  Google Scholar 

  25. marante de Camargo DA, Sinhoreti MA, Correr-Sobrinho L, de SN, Consani S (2006) Influence of the methodology and evaluation criteria on determining microleakage in dentin-restorative interfaces. Clin Oral Investig 10:317–323

    Article  Google Scholar 

  26. Mehl A, Godescha P, Kunzelmann KH, Hickel R (1996) Randspaltverhalten von Komposit-und Keramikinlays bei ausgedehnten Kavitäten. Dtsch Zahnarztl Z 51:701–704

    Google Scholar 

  27. Mondelli RF, Barbosa WF, Mondelli J, Franco EB, Carvalho RM (1998) Fracture strength of weakened human premolars restored with amalgam with and without cusp coverage. Am J Dent 11:181–184

    PubMed  Google Scholar 

  28. Mota CS, Demarco FF, Camacho GB, Powers JM (2003) Microleakage in ceramic inlays luted with different resin cements. J Adhes Dent 5:63–70

    PubMed  Google Scholar 

  29. Nothdurft FP, Schmitt T, Motter PJ, Pospiech PR (2008) Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and zirconium dioxide posts. Clin Oral Investig 12:331–336 doi:10.1007/s0078400802059

    Article  PubMed  Google Scholar 

  30. Preuss A, Rosentritt M, Frankenberger R, Beuer F, Naumann M (2008) Influence of type of luting cement used with all-ceramic crowns on load capability of post-restored endodontically treated maxillary central incisors. Clin Oral Investig 12:151–156

    Article  PubMed  Google Scholar 

  31. Pröbster L (2001) Sind vollkeramische Kronen und Brücken wissenschaftlich anerkannt? Gemeinsame Stellungnahme von DGZMK und DGZPW. Dtsch Zahnarztl Z 56:575–576

    Google Scholar 

  32. Ratcliff S, Becker IM, Quinn L (2001) Type and incidence of cracks in posterior teeth. J Prosthet Dent 86:168–172

    Article  PubMed  Google Scholar 

  33. Schenke F, Hiller KA, Schmalz G, Federlin M (2008) Marginal integrity of partial ceramic crowns within dentin with different luting techniques and materials. Oper Dent 33:516–525

    Article  PubMed  Google Scholar 

  34. Soares CJ, Martins LR, Pfeifer JM, Giannini M (2004) Fracture resistance of teeth restored with indirect-composite and ceramic inlay systems. Quintessence Int 35:281–286

    PubMed  Google Scholar 

  35. St-Georges AJ, Sturdevant JR, Swift EJ Jr., Thompson JY (2003) Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent 89:551–557

    Article  PubMed  Google Scholar 

  36. Stappert CF, Abe P, Kurths V, Gerds T, Strub JR (2008) Masticatory fatigue, fracture resistance, and marginal discrepancy of ceramic partial crowns with and without coverage of compromised cusps. J Adhes Dent 10:41–48

    PubMed  Google Scholar 

  37. Stappert CF, Guess PC, Chitmongkolsuk S, Gerds T, Strub JR (2007) All-ceramic partial coverage restorations on natural molars. Masticatory fatigue loading and fracture resistance. Am J Dent 20:21–26

    PubMed  Google Scholar 

  38. van Dijken JW, Hasselrot L, Ormin A, Olofsson AL (2001) Restorations with extensive dentin/enamel-bonded ceramic coverage. A 5-year follow-up. Eur J oral Sci 109:222–229

    Article  PubMed  Google Scholar 

  39. Wagner J, Hiller KA, Schmalz G (2003) Long-term clinical performance and longevity of gold alloy vs ceramic partial crowns. Clin Oral Investig 7:80–85

    Article  PubMed  Google Scholar 

  40. Walker BN, Makinson OF, Peters MC (1998) Enamel cracks. The role of enamel lamellae in caries initiation. Aust Dent J 43:110–116

    PubMed  Google Scholar 

Download references

Acknowledgment

The authors express their thanks and appreciation to Prof Dr Loys J Nunez, Memphis, TN, USA, for his constructive criticism and advice regarding the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Krifka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krifka, S., Stangl, M., Wiesbauer, S. et al. Influence of different cusp coverage methods for the extension of ceramic inlays on marginal integrity and enamel crack formation in vitro. Clin Oral Invest 13, 333–341 (2009). https://doi.org/10.1007/s00784-008-0239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-008-0239-z

Keywords

Navigation