Skip to main content

Advertisement

Log in

Impact of the intraoral location on the rate of biofilm growth

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The aims of the present study were: a) to assess the impact of the intraoral location on the rate of biofilm growth, and b) to establish an in vivo biofilm model to examine intraoral biofilm growth. Eight healthy volunteers wore acrylic splints with 15 glass slabs each in the upper and lower jaws to build up plaque. After 48 h, the specimens were removed and stained using the vital fluorescence technique. Biofilm thickness was evaluated by confocal laser scanning microscopy (CLSM). The mean plaque thickness amounted to 77.6±29.1 µm on the buccal sites of the upper jaw and 71.9±26.3 µm on the buccal sites of lower jaw. On the palatal site a biofilm of 52.1±26.2 µm thickness was grown, which was significantly less compared with the other locations evaluated (p<0.001). The results demonstrate that the in situ biofilm thickness on the buccal sites was similar irrespective of the location in the oral cavity. The new splint system described may be a useful tool for further standardised experimental studies regarding influences on growth and structure of intraoral biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Auschill TM, Arweiler NB, Netuschil L, Brecx M, Reich E, Sculean A (2001) Spatial distribution of vital and dead microorganisms in dental biofilms. Arch Oral Biol 46:471–476

    Article  CAS  PubMed  Google Scholar 

  2. Auschill TM, Arweiler NB, Sculean A, Brecx M, Reich E, Netuschil L (2002) The effect of dental restorative materials on dental biofilm. Eur J Oral Sci 110:48–53

    Article  CAS  PubMed  Google Scholar 

  3. Bos R, Van der Mei HC, Buscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Mirocbiol Rev 23:179–230

    Article  CAS  Google Scholar 

  4. Bradshaw DJ, Marsh PD, Watson GK, Allison C (1997) Effect of conditioning films on oral microbial biofilm development. Biofoul 11:217–226

    CAS  Google Scholar 

  5. Caldwell DE, Korber DR, Lawrence JR (1992) Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy. J Microbiol Meth 15:249–261

    Article  Google Scholar 

  6. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    CAS  PubMed  Google Scholar 

  7. Dibdin GH (1981) Diffusion of sugars and carboxylic acids through dental plaque in vitro. Arch Oral Biol 26:515–524

    CAS  PubMed  Google Scholar 

  8. Furuichi Y, Lindhe J, Ramberg P, Volpe AR (1992) Patterns of de novo plaque formation in the human dentition. J Clin Periodontol 19:423–433

    CAS  PubMed  Google Scholar 

  9. Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11:160–167

    CAS  PubMed  Google Scholar 

  10. Guggenheim M, Shapiro S, Gmür R, Guggenheim B (2001) Spatial arrangements and associative behaviour of species in an in vitro oral biofilm model. Appl Environ Microbiol 3:1343–1350

    Article  Google Scholar 

  11. Main C, Geddes DA, McNee SG, Collins WJ, Smith DC, Weetman DA (1984) Instrumentation for measurement of dental plaque thickness in situ. J Biomed Eng 6:151–154

    CAS  PubMed  Google Scholar 

  12. Mandel ID (1974) Relation of saliva and plaque to caries. J Dent Res 53:246–266

    CAS  PubMed  Google Scholar 

  13. Marshall KC (1992) Biofilms: an overview of bacterial adhesion, activity and control at surfaces. Am Soc Microbiol News 58:202–207

    Google Scholar 

  14. McCoy JC, Bryers JD, Robbins J, Costerton JW (1981) Observations in fouling biofilm formation. Can J Microbiol 15:263–276

    Google Scholar 

  15. Netuschil L, Reich E, Brecx M (1989) Direct measurement of the bactericidal effect of chlorhexidine on human dental plaque. J Clin Periodontol 16:484–488

    CAS  PubMed  Google Scholar 

  16. Netuschil L, Reich E, Unteregger G, Sculean A, Brecx M (1998) A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque. Arch Oral Biol 43:277–285

    Article  CAS  PubMed  Google Scholar 

  17. Nyvad B, Kilian M (1987) Microbiology of early colonisation of human enamel and root surfaces in vivo. Scand J Dent Res 95:369–360

    CAS  PubMed  Google Scholar 

  18. Quirynen M, van Steenberghe D (1989) Is early plaque growth rate constant with time? J Clin Periodontol 16:278–283

    CAS  PubMed  Google Scholar 

  19. Ramberg P, Furuichi Y, Lindhe J, Gaffar A (1992) A model for studying the effects of mouthrinses on de novo plaque formation. J Clin Periodontol 19:509–520

    CAS  PubMed  Google Scholar 

  20. Roberts SK, Bass C, Brading M, Lappin-Scott H, Stoodley P (1999) Biofilm formation and structure: What’s new? In: Newman HN, Wilson M (eds) Dental plaque revisited—oral biofilms in health and disease. BioLine, Cardiff; pp 15–36

  21. Robinson C, Kirkham J, Percival R, Shore RC, Bonass WA, Brookes SJ, Kusa L, Nakagaki H, Kato K, Natress B (1997) A method for the quantitative site specific study of the biochemistry within dental plaque biofilms formed in vivo. Caries Res 31:194–200

    CAS  PubMed  Google Scholar 

  22. Saxton CA (1975) Determination by electron microscope autoradiography of the distribution in plaque of organisms that synthesize intracellular polysaccharide in situ. Caries Res 9:418–437

    CAS  PubMed  Google Scholar 

  23. Shapiro S, Giertsen E, Guggenheim B (2002) An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res 36:93–100

    Article  CAS  PubMed  Google Scholar 

  24. Singleton S, Treloar R, Warren P, Watson GK, Hodgson R, Allison C (1997) Methods for microscopic characterization of oral biofilms: analysis of colonization, microstructure, and molecular transport phenomena. Adv Dent Res 11:133–149

    CAS  PubMed  Google Scholar 

  25. Sissons CH (1997) Artificial dental plaque biofilm model systems. Adv Dent Res 11:110–126

    CAS  PubMed  Google Scholar 

  26. Sissons CH, Cutress TW, Hoffman MP, Wakefield JSJ (1991) A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH and mineralization. J Dent Res 70:1409–1416

    CAS  PubMed  Google Scholar 

  27. Tatevossian A (1979) Diffusion of radiotracers in human dental plaque. Caries Res 13:154–162

    CAS  PubMed  Google Scholar 

  28. Theilade J (1989) Dental plaque and dental calculus. In Lindhe J (ed): Textbook of clinical periodontology, 2nd edn. Munksgaard, Copenhagen, pp 92–128

    Google Scholar 

  29. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79:21–27

    CAS  PubMed  Google Scholar 

  30. Yeganeh S, Lynch E, Jovanovski V, Zou L (1999) Quantification of root surface plaque using a new 3-D laser scanning method. J Clin Periodontol 26:692–697

    Article  CAS  PubMed  Google Scholar 

  31. Zaura-Arite E, ten Cate JM (2000) Effect of fluoride- and chlorhexidine containing varnishes on plaque composition and on demineralisation of dentinal grooves in situ. Eur J Oral Sci 108:154–164

    Article  CAS  PubMed  Google Scholar 

  32. Zaura-Arite E, Van Marle J, ten Cate JM (2001) Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80:1436–1440

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant from the Deutsche Forschungsgemeinschaft (DFG; Ar 341/1-1). The authors thank Marie Follo, Ph.D., Department of Haematology and Oncology, Core Facility, Albert-Ludwigs-University, Freiburg, Germany for her help in the image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Auschill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auschill, T.M., Hellwig, E., Sculean, A. et al. Impact of the intraoral location on the rate of biofilm growth. Clin Oral Invest 8, 97–101 (2004). https://doi.org/10.1007/s00784-004-0255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-004-0255-6

Keywords

Navigation