Skip to main content
Log in

Minimax theorems for American options without time-consistency

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In this paper, we give sufficient conditions guaranteeing the validity of the well-known minimax theorem for the lower Snell envelope. Such minimax results play an important role in the characterisation of arbitrage-free prices of American contingent claims in incomplete markets. Our conditions do not rely on the notions of stability under pasting or time-consistency and reveal some unexpected connection between the minimax result and path properties of the corresponding process of densities. We exemplify our general results in the case of families of measures corresponding to diffusion exponential martingales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Amarante, M.: A characterization of exact non-atomic market games. J. Math. Econ. 54, 59–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayraktar, E., Karatzas, I., Yao, S.: Optimal stopping for dynamic convex risk measures. Ill. J. Math. 54, 1025–1067 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bayraktar, E., Yao, S.: Optimal stopping for non-linear expectations—part I. Stoch. Process. Appl. 121, 185–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayraktar, E., Yao, S.: Optimal stopping for non-linear expectations—part II. Stoch. Process. Appl. 121, 212–264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belomestny, D., Krätschmer, V.: Optimal stopping under model uncertainty: a randomized stopping times approach. Ann. Appl. Probab. 26, 1260–1295 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belomestny, D., Krätschmer, V.: Addendum to “Optimal stopping under model uncertainty: a randomized stopping times approach”. Ann. Appl. Probab. 27, 1289–1293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belomestny, D., Krätschmer, V.: Optimal stopping under probability distortions and law invariant coherent risk measures. Math. Oper. Res. 42, 806–833 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, X., Riedel, F.: Optimal stopping under ambiguity in continuous time. Math. Financ. Econ. 7, 29–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delbaen, F.: The structure of \(m\)-stable sets and in particular of the set of risk neutral measures. In: Émery, M., Yor, M. (eds.) Séminaire de Probabilités XXXIX, in Memoriam Paul-André Meyer. Lecture Notes in Mathematics, vol. 1874, pp. 215–258. Springer, Berlin (2006)

    Chapter  Google Scholar 

  11. Föllmer, H., Schied, A.: Stochastic Finance, 3rd edn. De Gruyter, Berlin, New York (2011)

    Book  MATH  Google Scholar 

  12. Giné, E., Nickl, R.: Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  13. Karatzas, I., Kou, S.G.: Hedging American contingent claims with constrained portfolios. Finance Stoch. 2, 215–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karatzas, I., Zamfirescu, I.-M.: Game approach to the optimal stopping problem. Stochastics 77, 401–435 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kingman, J.F.C., Robertson, A.P.: On a theorem of Lyapunov. J. Lond. Math. Soc. 43, 347–351 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kobylanski, M., Quenez, M.-C.: Optimal stopping time problem in a general framework. Electron. J. Probab. 17, 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. König, H.: On some basic theorems in convex analysis. In: Korte, B. (ed.) Modern Applied Mathematics—Optimization and Operations Research, pp. 107–144. North-Holland, Amsterdam (1982)

    Google Scholar 

  18. König, H.: Measure and Integration. Springer, Berlin/Heidelberg (1997)

    MATH  Google Scholar 

  19. König, H.: Sublinear functionals and conical measures. Arch. Math. 77, 56–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kremp, S.: An elementary proof of the Eberlein–Šmulian theorem and the double limit criterion. Arch. Math. 47, 66–69 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Corrected, 3rd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  22. Simons, S.: A convergence theorem with boundary. Pac. J. Math. 40, 703–708 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Treviño-Aguilar, E.: American Options in Incomplete Markets: Upper and Lower Snell Envelopes and Robust Partial Hedging. Ph.D. thesis, Humboldt University at Berlin (2008). Available online at https://edoc.hu-berlin.de/handle/18452/16472

  24. Treviño-Aguilar, E.: Optimal stopping under model uncertainty and the regularity of lower Snell envelopes. Quant. Finance 12, 865–871 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Viens, F.G., Vizcarra, A.B.: Supremum concentration inequality and modulus of continuity for sub-\(n\)th chaos processes. J. Funct. Anal. 248, 1–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wilansky, A.: Topology for Analysis. Ginn, Waltham (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mikhail Urusov for fruitful discussions and helpful remarks. We are also grateful to some anonymous referee and the Co-Editor Alexander Schied for valuable suggestions to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Krätschmer.

Additional information

The first author’s work was supported by the Russian Academic Excellence Project “5–100.”

Appendix A: Paths of nearly sub-Gaussian random fields

Appendix A: Paths of nearly sub-Gaussian random fields

Let \((\Theta ,d)\) be some totally bounded semimetric space with diameter \(\Delta \). For \(\delta , \varepsilon > 0\), the symbols \(\mathcal{D}( \delta ,d)\) and \(N(\Theta ,d;\varepsilon )\) are used in an analogous manner as the notations \(\mathcal{D}(\delta ,d_{\Theta })\) and \(N(\Theta ,d_{\Theta };\varepsilon )\) from Sect. 3. We call a centered stochastic process \((X^{\theta })_{\theta \in \Theta }\) a nearly sub-Gaussian random field with respect to\(d\) if there is some \(C \geq 1\) with

$$ \mathbb{E}\big[\exp \big(\lambda (X^{\theta }- X^{\vartheta })\big) \big]\leq C\exp \big(\lambda ^{2}~d(\theta ,\vartheta )^{2}/2\big) \qquad \mbox{for $\theta , \vartheta \in \Theta $ and $\lambda >0$}. $$
(A.1)

Note that by symmetry, condition (A.1) also holds for arbitrary \(\lambda \in \mathbb{R}\). For \(C = 1\), this definition reduces to the ordinary notion of sub-Gaussian random fields. For further information on sub-Gaussian random fields, see e.g. [12, Sect. 2.3]. By a suitable change of the semimetric, we may describe any nearly sub-Gaussian random field as a sub-Gaussian random field.

Lemma A.1

If\((X^{\theta })_{\theta \in \Theta }\)is a nearly sub-Gaussian random field with respect to\(d\), then it is a sub-Gaussian random field with respect to\(\overline{d} := \varepsilon d\)for some\(\varepsilon > 1\).

Proof

Let \(C > 1\) be such that \((X^{\theta })_{\theta \in \Theta }\) satisfies (A.1). Then \(\varepsilon := \sqrt{12(2 C + 1)}\) is as required (cf. [12, Lemma 2.3.2]). □

The following properties of sub-Gaussian random fields are fundamental.

Proposition A.2

Let\(X = (X^{\theta })_{\theta \in \Theta }\)be a nearly sub-Gaussian random field on some probability space\((\overline{\Omega },\overline{ \mathcal{F}},\overline{\mathrm{P}})\)with respect to\(d\). If\(\mathcal{D}(\Delta ,d) < \infty \), then\(X\)admits a separable version, and each separable version of\(X\)has\(\overline{\mathrm{P}}\)-almost surely bounded and\(d\)-uniformly continuous paths. In particular, for any separable version\(\widehat{X}\)and for every\(\overline{\theta } \in \Theta \), there is some random variable\(U^{\overline{\theta }}\)on\((\overline{\Omega },\overline{\mathcal{F}},\overline{\mathrm{P}})\)such that

$$ \sup _{\theta \in \Theta }\widehat{X}^{\theta }\leq U^{\overline{ \theta }} + \widehat{X}^{\overline{\theta }}\quad \overline{ \mathrm{P}}\textit{-a.s.} \quad \,\,\,\, \textit{and} \quad \,\,\,\, \mathbb{E}_{\overline{\mathrm{P}}}[\exp (p U^{\overline{\theta }})] < \infty \quad \textit{for every}~p\in (0,\infty ). $$

Proof

In view of Lemma A.1, we may assume without loss of generality that \(X\) is a sub-Gaussian random field with respect to \(d\). It is already known (see [12, Theorem 2.3.7]) that \(X\) admits a separable version, and that each such version has \(\overline{\mathrm{P}}\)-almost surely bounded and \(d\)-uniformly continuous paths. Now fix any separable version \(\widehat{X}\) of \(X\) and an arbitrary \(\overline{\theta }\in \Theta \). We have

$$ \sup _{\theta \in \Theta }\widehat{X}^{\theta }\leq \widehat{X}^{\overline{ \theta }} + \sup _{\theta \in \Theta }|\widehat{X}^{\theta } - \widehat{X}^{\overline{\theta }}|, $$

and the process \((|\widehat{X}^{\theta } - \widehat{X}^{\overline{ \theta }}|)_{\theta \in \Theta }\) is separable due to the separability of \(\widehat{X}\). Then we may find some at most countable subset \(\Theta _{0}\subseteq \Theta \) such that

$$\begin{aligned} \sup _{\theta \in \Theta }|\widehat{X}^{\theta } - \widehat{X}^{\overline{ \theta }}| = \sup _{\theta \in \Theta _{0}}|\widehat{X}^{\theta } - \widehat{X}^{\overline{\theta }}| \qquad \overline{\mathrm{P}}\text{-a.s.} \end{aligned}$$

Hence \(U^{\overline{\theta }} := \sup _{\theta \in \Theta _{0}}|X^{ \theta } - X^{\overline{\theta }}|\) defines a random variable on \((\overline{\Omega },\overline{\mathcal{F}},\overline{\mathrm{P}})\) satisfying

$$ U^{\overline{\theta }} = \sup _{\theta \in \Theta }|\widehat{X}^{ \theta } - \widehat{X}^{\overline{\theta }}| \qquad \overline{\mathrm{P}}\mbox{-a.s.} $$

It remains to show that \(\mathbb{E}_{\overline{\mathrm{P}}}[\exp (p U ^{\overline{\theta }})] < \infty \) for \(p\in (0,\infty )\). So fix \(p\in (0,\infty )\). First, observe that \(\widehat{X}\) is again a sub-Gaussian random field. Thus by [12, Lemma 2.3.1], we have

$$ \mathbb{E}_{\overline{\mathrm{P}}}\bigg[\exp \bigg(\Big(\frac{X^{ \theta }-X^{\vartheta }}{\sqrt{6}~ d(\theta ,\vartheta )}\Big)^{2} \bigg)\bigg]\leq 2 \qquad \mbox{for}~\theta , \vartheta \in \Theta ,~d(\theta ,\vartheta ) \not = 0. $$

Hence we may apply the results from [25] with respect to the totally bounded semimetric \(\overline{d} := \sqrt{6}d\). Note that \((\widehat{X}^{\theta })_{\theta \in \Theta }\) is also separable with respect to \(\overline{d}\), and that \(\overline{ \Delta } = \sqrt{6}\Delta \) for the diameter \(\overline{\Delta }\) with respect to \(\overline{d}\). Since \(N(\Theta ,\overline{d};\varepsilon )\leq N(\Theta ,d;\varepsilon /\sqrt{6})\) for every \(\varepsilon > 0\), we obtain for every \(\delta > 0\) that

$$ \int _{0}^{\delta }\sqrt{\ln N(\Theta ,\overline{d};\varepsilon )}~d \varepsilon \leq \int _{0}^{\delta }\sqrt{\ln N(\Theta ,d;\varepsilon /\sqrt{6})}~d\varepsilon = \sqrt{6} {\mathcal{D}}(\delta / \sqrt{6},d). $$

Then in view of [25, Corollary 3.2], we may find some constant \(C > 0\) such that

$$ \overline{\mathrm{P}}\big[ U^{\overline{\theta }} > xC\sqrt{6}{\mathcal{D}}( \Delta ,d)\big] \leq 2\exp (-x^{2}/2) \qquad \mbox{for}~x\geq 1. $$

Furthermore, setting \(\widehat{C} := C\sqrt{6}{\mathcal{D}}(\Delta ,d)\), we may observe that

$$\begin{aligned} \int _{1}^{\infty }\overline{\mathrm{P}}\big[ U^{\overline{\theta }} > x\widehat{C}\big]\exp (xp\widehat{C})~dx & \leq \int _{1}^{\infty } 2 \exp (-x^{2}/2)\exp (xp\widehat{C})~dx \\ & \leq 2\sqrt{2\pi }\exp (p^{2}\widehat{C}^{2}/2). \end{aligned}$$

Then applying the change of variables formula several times, we obtain

$$\begin{aligned} \int _{\exp (p\widehat{C})}^{\infty }\overline{\mathrm{P}}\big[ \exp (pU ^{\overline{\theta }}) > y\big]~dy &= p\widehat{C}\int _{1}^{\infty }\overline{ \mathrm{P}}\big[ U^{\overline{\theta }} > \widehat{C}u\big]\exp (p \widehat{C}u)~du < \infty . \end{aligned}$$

Hence

$$ \mathbb{E}_{\overline{\mathrm{P}}}[\exp (pU^{\overline{\theta }})] = \int _{0}^{\infty }\overline{\mathrm{P}}\big[ \exp (pU^{\overline{ \theta }}) > y\big]~dy < \infty $$

which completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belomestny, D., Hübner, T., Krätschmer, V. et al. Minimax theorems for American options without time-consistency. Finance Stoch 23, 209–238 (2019). https://doi.org/10.1007/s00780-018-0378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-018-0378-2

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation