Skip to main content
Log in

A holistic and principled approach for the empty-answer problem

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

We propose a principled optimization-based interactive query relaxation framework for queries that return no answers. Given an initial query that returns an empty-answer set, our framework dynamically computes and suggests alternative queries with fewer conditions than those the user has initially requested, in order to help the user arrive at a query with a non-empty-answer, or at a query for which no matter how many additional conditions are ignored, the answer will still be empty. Our proposed approach for suggesting query relaxations is driven by a novel probabilistic framework based on optimizing a wide variety of application-dependent objective functions. We describe optimal and approximate solutions of different optimization problems using the framework. Moreover, we discuss two important extensions to the base framework: the specification of a minimum size on the number of results returned by a relaxed query and the possibility of proposing multiple conditions at the same time. We analyze the proposed solutions, experimentally verify their efficiency and effectiveness, and illustrate their advantages over the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Instead of a single relaxation, a ranked list of top-k relaxations could also be suggested in one step.

  2. Other aggregation functions (such as average) are also possible; the appropriate choice of the aggregation function is orthogonal to our problem.

  3. Cost of an empty leaf node is 0.

  4. Choice node and relaxation node cost of Static is same as that of Semi- Dynamic.

  5. The independence assumption is heavily used in database literature, and as the experimental evaluation shows, it does not obstruct the effectiveness of our approach.

  6. Recall that the lower bound is always 0.

  7. 1—very dissatisfied, 2—dissatisfied, 3—satisfied, 4—very satisfied.

References

  1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking of database query results. In: CIDR (2003)

  2. Ahlberg, C., Shneiderman, B.: The alphaslider: a compact and rapid selector. In: CHI, p. 226 (1994)

  3. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A.: An optimization framework for query recommendation. In: WSDM, pp. 161–170 (2010)

  4. Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime measures for top-k algorithms on exact and fuzzy data sets. VLDB J. 18(2), 407–427 (2009)

    Article  Google Scholar 

  5. Baeza-Yates, R.A., Hurtado, C.A., Mendoza, M.: Query recommendation using query logs in search engines. In: EDBT Workshops, pp. 588–596 (2004)

  6. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. Addison-Wesley, New York (2011)

    Google Scholar 

  7. Basu Roy, S., Wang, H., Das, G., Nambiar, U., Mohania, M.: Minimum-effort driven dynamic faceted search in structured databases. In: CIKM, pp. 13–22 (2008)

  8. Bishop, Y.M.M., Fienberg, S.E., Holland, P.W.: Discr. Multivariate Analysis: Theory and Practice. MIT Press, Cambridge (1975)

    MATH  Google Scholar 

  9. Bosc, P., HadjAli, A., Pivert, O.: Empty versus overabundant answers to flexible relational queries. Fuzzy Sets Syst. 159(12), 1450–1467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bosc, P., HadjAli, A., Pivert, O.: Incremental controlled relaxation of failing flexible queries. JIIS 33(3), 261–283 (2009)

    Google Scholar 

  11. Chang, Y., Ounis, I., Kim, M.: Query reformulation using automatically generated query concepts from a document space. Inf. Process. Manag. 42(2), 453–468 (2006)

    Article  Google Scholar 

  12. Chapman, A., Jagadish, H.V.: Why not? In: SIGMOD, pp. 523–534 (2009)

  13. Chaudhuri, S.: Generalization and a framework for query modification. In: ICDE, pp. 138–145 (1990)

  14. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of database query results. In: VLDB, pp. 888–899 (2004)

  15. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic information retrieval approach for ranking of database query results. TODS 31(3), 1134–1168 (2006)

    Article  Google Scholar 

  16. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD Rec. 42(3), 6–18 (2013)

    Article  Google Scholar 

  17. Chu, W.W., Chen, Q.: Neighborhood and associative query answering. J. Intell. Inf. Syst. 1(3/4), 355–382 (1992)

    Article  Google Scholar 

  18. Domingo, C., Mishra, N., Pitt, L.: Efficient read-restricted monotone CNF/DNF dualization by learning with membership queries. Mach. Learn. 37(1), 89–110 (1999)

    Article  MATH  Google Scholar 

  19. Gaasterland, T.: Cooperative answering through controlled query relaxation. IEEE Expert 12(5), 48–59 (1997)

    Article  Google Scholar 

  20. Garey, M.R., Johnson, D.S.: Computers and Intractability: a guide to the theory of NP-completeness (1990)

  21. Gauch, S., Smith, J.: Search improvement via automatic query reformulation. TOIS 9(3), 249–280 (1991)

    Article  Google Scholar 

  22. Gauch, S., Smith, J.B.: An expert system for automatic query reformulation. JASIS 44(3), 124–136 (1993)

    Article  Google Scholar 

  23. Godfrey, P.: Minimization in cooperative response to failing database queries. Int. J. Coop. Inf. Syst. 6(2), 95–149 (1997)

    Article  Google Scholar 

  24. Greene, S., Tanin, E., Plaisant, C., Shneiderman, B., Olsen, L., Major, G., Johns, S.: The end of zero-hit queries: query previews for NASA’s global change master directory. Int. J. Digit. Libr. 2(2–3), 79–90 (1999)

    Article  Google Scholar 

  25. Hristidis, V., Hu, Y., Ipeirotis, P.G.: Ranked queries over sources with boolean query interfaces without ranking support. In: ICDE, pp. 872–875 (2010)

  26. Janas, J.M.: On the feasibility of informative answers. In: Gallaire, H., Minker, J., Nicolas, J. (eds.) Advances in Data Base Theory, pp. 397–414. Springer, New York (1981)

    Chapter  Google Scholar 

  27. Jannach, D.: Techniques for fast query relaxation in content-based recommender systems. In: KI’06: Advances in AI, pp. 49–63 (2007)

  28. Jannach, D., Liegl, J.: Conflict-directed relaxation of constraints in content-based recommender systems. In: Advances in Applied AI, pp. 819–829 (2006)

  29. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. AAAI 4, 167–172 (2004)

    Google Scholar 

  30. Kashyap, A., Hristidis, V., Petropoulos, M.: Facetor: cost-driven exploration of faceted query results. In: CIKM (2010)

  31. Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and selection queries. In: VLDB, pp. 199–210 (2006)

  32. Li, C., Yan, N., Roy, S.B., Lisham, L., Das, G.: Facetedpedia: dynamic generation of query-dependent faceted interfaces for wikipedia. In: WWW, pp. 651–660 (2010)

  33. Luo, G.: Efficient detection of empty-result queries. In: VLDB, pp. 1015–1025 (2006)

  34. McSherry, D.: Incremental relaxation of unsuccessful queries. In: ECCBR, pp. 331–345 (2004)

  35. Mishra, C., Koudas, N.: Interactive query refinement. In: EDBT, pp. 862–873. ACM (2009)

  36. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

  37. Motro, A.: Seave: a mechanism for verifying user presuppositions in query systems. TOIS 4(4), 312–330 (1986)

    Article  Google Scholar 

  38. Motro, A.: Vague: a user interface to relational databases that permits vague queries. TOIS 6(3), 187–214 (1988)

    Article  Google Scholar 

  39. Motro, A.: Flex: a tolerant and cooperative user interface to databases. TKDE 2(2), 231–246 (1990)

    Google Scholar 

  40. Mottin, D., Marascu, A., Roy, S.B., Das, G., Palpanas, T., Velegrakis, Y.: A probabilistic optimization framework for the empty-answer problem. PVLDB 6(14), 1762–1773 (2013)

  41. Mottin, D., Marascu, A., Basu Roy, S., Das, G., Palpanas, T., Velegrakis, Y.: IQR: an interactive query relaxation system for the empty-answer problem. In: SIGMOD, pp. 1095–1098, ACM (2014)

  42. Muslea, I.: Machine learning for online query relaxation. In: KDD, pp. 246–255 (2004)

  43. Muslea, I., Lee, T.J.: Online query relaxation via bayesian causal structures discovery. In: AAAI, pp. 831–836 (2005)

  44. Palpanas, T., Koudas, N.: Entropy based approximate querying and exploration of datacubes. In: SSDBM, pp. 81–90 (2001)

  45. Palpanas, T., Koudas, N., Mendelzon, A.O.: Using datacube aggregates for approximate querying and deviation detection. IEEE Trans. Knowl. Data Eng. 17(11), 1465–1477 (2005)

    Article  Google Scholar 

  46. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a semantic approach based on decisive subspaces. In: VLDB, pp. 253–264 (2005)

  47. Plaisant, C., Shneiderman, B., Doan, K., Bruns, T.: Interface and data architecture for query preview in networked information systems. ACM Trans. Inf. Syst. 17(3), 320–341 (1999)

    Article  Google Scholar 

  48. Radlinski, F., Joachims, T.: Query chains: learning to rank from implicit feedback. In: KDD, pp. 239–248. ACM (2005)

  49. Ras, Z.W., Dardzinska, A.: Solving failing queries through cooperation and collaboration. WWW 9(2), 173–186 (2006)

    Article  Google Scholar 

  50. Singh, G., Parikh, N., Sundaresan, N.: Rewriting null e-commerce queries to recommend products. In: WWW (2012)

  51. Tran, Q.T., Chan, C.-Y.: How to conquer why-not questions. In: SIGMOD, pp. 15–26 (2010)

  52. Wen, J.-R., Nie, J.-Y., Zhang, H.: Query clustering using user logs. TOIS 20(1), 59–81 (2002)

    Article  Google Scholar 

  53. Zhang, X., Chomicki, J.: Preference queries over sets. In: ICDE, pp. 1019–1030 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Mottin.

Additional information

The work was primarily done while D. Mottin and A. Marascu were at the University of Trento.

Gautam Das was partially supported by Texas NHARP, Microsoft Research, and NSF Grants 0812601, 0915834, 1018865. Work done while at the University of Trento and the Qatar Computing Research Institute.

Yannis Velegrakis was partially supported by the ERC grant Lucretius and the KEYSTONE Cost Action.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottin, D., Marascu, A., Roy, S.B. et al. A holistic and principled approach for the empty-answer problem. The VLDB Journal 25, 597–622 (2016). https://doi.org/10.1007/s00778-016-0431-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-016-0431-8

Keywords

Navigation