Skip to main content
Log in

The inactivation of horseradish peroxidase isoenzyme AZ by hydrogen peroxide: an example of partial resistance due to the formation of a stable enzyme intermediate

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The inactivation of horseradish peroxidase A2 (HRP-A2) with H2O2 as the sole substrate has been studied. In incubation experiments it was found that the fall in HRP-A2 activity was non-linearly dependent on H2O2 concentrations and that a maximum level of inactivation of approximately 80% (i.e. ∼ 20% residual activity) was obtained with 2000 or more equivalents of H2O2. Further inactivation was only induced at much higher H2O2 concentrations. Spectral changes during incubations of up to 5 days showed the presence of a compound III-like species whose abundance was correlated to the level of resistance observed. Inactivation was pH dependent, the enzyme being much more sensitive under acid conditions. A partition ratio (r 1≈1140 at pH 6.5) between inactivation and catalysis was calculated from the data. The kinetics of inactivation followed single exponential time curves and were H2O2 concentration dependent. The apparent maximum rate constant of inactivation was λ max=3.56±0.07×10−4 s−1 and the H2O2 concentration required to give λ max/2 was K λ=9.94±0.52 mM. The relationship λ max<k i has been shown to apply and thus the rate constant of inactivation has been calculated as k i=1.9×10−3 s−1. HRP-A2 possessed catalase-like oxygen gas-releasing activity, the catalytic constant being k 3=2.2 s−1, and the affinity for H2O2 as K 2=23 mM. Catalase-like activity was pH dependent and favoured under more basic conditions. A mechanistic model has been developed and used to explain the behaviour of HRP-A2. The model suggests that, in common with HRP-C, mechanism-based (suicide) inactivation is being observed but that a fraction of the HRP-A2 is protected from inactivation in the form of a modified compound III species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azinobis(3-ethylbenzthia-zoline-6-sulfonic acid)

HRP:

horseradish peroxidase

m-CPBA:

m-chloroperoxybenzoic acid

TNM:

tetranitromethane

References

  1. Welinder KG (1992) Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  2. Shannon LM, Kay E, Lew JY (1966) J Biol Chem 241:2166–2172

    PubMed  CAS  Google Scholar 

  3. Yamazaki I, Nakajima R (1986) Physico-chemical comparison between horseradish peroxidases A and C. In: Greppin H, Penel C, Gaspar Th (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, pp 71–84

    Google Scholar 

  4. Dunford HB (1990) Horseradish peroxidase: structure and kinetic properties. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  5. Hiner ANP, Hernández-Ruíz J, Arnao MB, García-Cánovas F, Acosta M (1996) Biotechnol Bioeng 50:655–662

    Article  PubMed  CAS  Google Scholar 

  6. Welinder KG (1976) FEBS Lett 72:19–23

    Article  PubMed  CAS  Google Scholar 

  7. Welinder KG (1979) Eur J Biochem 96:483–502

    Article  PubMed  CAS  Google Scholar 

  8. Haschke RH, Friedhoff JM (1978) Biochem Biophys Res Commun 80:1039–1042

    Article  PubMed  CAS  Google Scholar 

  9. Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038

    Article  PubMed  CAS  Google Scholar 

  10. Stoffer B, Rasmussen CB, Welinder KG (1991) Amino acid sequence of acidic horseradish peroxidase A. In: Lobarzewski H, Greppin H, Penel C, Gaspar Th (eds) Biochemical, molecular, and physiological aspects of plant peroxidases. University of Geneva, Geneva, pp 43–47

    Google Scholar 

  11. Feis A, Howes BD, Indiani C, Smulevich G (1998) J Raman Spectrosc 29:933–938

    Article  CAS  Google Scholar 

  12. Dolphin D, Forman A, Borg DC, Fajer J, Felton RH (1971) Recent Res Dev Agric Food Chem 68:614–618

    CAS  Google Scholar 

  13. Dunford HB, Stillman JS (1976) Coord Chem Rev 19:187–251

    Article  CAS  Google Scholar 

  14. Harris RZ, Newmeyer SL, Ortiz de Montellano PR (1993) J Biol Chem 268:1637–1645

    PubMed  CAS  Google Scholar 

  15. Araiso T, Miyoshi K, Yamazaki I (1976) Biochemistry 15:3059–3063

    Article  PubMed  CAS  Google Scholar 

  16. Ohlsson P-I, Paul K-G, Wold S (1984) Acta Chem Scand Ser B 38:853–859

    Article  Google Scholar 

  17. Marklund S, Ohlsson P-I, Opara A, Paul K-G (1974) Biochim Biophys Acta 350:304–313

    Article  PubMed  CAS  Google Scholar 

  18. Acosta M, Arnao MB, del Rio JA, García-Cánovas F (1989) Biochim Biophys Acta 996:7–12

    Article  CAS  Google Scholar 

  19. Arnao MB, Acosta M, del Rio JA, Varón R, García-Cánovas F (1990) Biochim Biophys Acta 1041:43–47

    Article  PubMed  CAS  Google Scholar 

  20. Rodríguez-López JN, Hernández-Ruíz J, García-Cánovas F, Thorneley RNF, Acosta M, Arnao MB (1997) J Biol Chem 272:5469–5476

    Article  PubMed  Google Scholar 

  21. Arnao MB, Acosta M, del Rio JA, García-Cánovas F (1990) Biochim Biophys Acta 1038:85–89

    Article  PubMed  CAS  Google Scholar 

  22. Acosta M, Arnao MB, Hernández-Ruíz J, García-Cánovas F (1993) Inactivation of peroxidase by hydroperoxides. In: Welinder KG, Rasmussen SK, Penel C, Greppin H (eds) Plant peroxidases: biochemistry and physiology. University of Geneva, Geneva, pp 201–205

    Google Scholar 

  23. Hiner ANP, Hernández-Ruíz J, García-Cánovas F, Smith AT, Arnao MB, Acosta M (1995) Eur J Biochem 234:506–512

    Article  PubMed  CAS  Google Scholar 

  24. Arnao MB, Hernández-Ruíz J, Varón R, García-Cánovas F, Acosta M (1995) J Mol Catal A 104:179–191

    Article  CAS  Google Scholar 

  25. Arnao MB, García-Cánovas F, Acosta M (1996) Biochem Mol Biol Int 39:97–107

    PubMed  CAS  Google Scholar 

  26. Rodríguez-López JN, Ros-Martínez JR, Varón R, García-Cánovas F (1992) Anal Biochem 202:356–360

    Article  PubMed  Google Scholar 

  27. Nakajima R, Yamazaki I (1987) J Biol Chem 262:2576–2581

    PubMed  CAS  Google Scholar 

  28. Tudela J, García-Cánovas F, Varón R, García-Carmona F, Gálvez J, Lozano JA (1987) Biochim Biophys Acta 912:408–416

    Article  PubMed  CAS  Google Scholar 

  29. Kobayashi K, Hayashi K (1981) J Biol Chem 256:12350–12354

    PubMed  CAS  Google Scholar 

  30. Nicholls P, Schonbaum GR (1963) Catalases. In: Boyer PD, Lardy H, Myrbach K (eds) The enzymes. Academic Press, New York, pp 147–225

    Google Scholar 

  31. Hochman A, Goldberg I (1991) Biochim Biophys Acta 1077:299–307

    Article  PubMed  CAS  Google Scholar 

  32. Sun W, Kadima TA, Pickard MA, Dunford HB (1994) Biochem Cell Biol 72:321–331

    Article  PubMed  CAS  Google Scholar 

  33. Hiner ANP, Rodríguez-López JN, Arnao MB, Lloyd Raven E, García-Cánovas F, Acosta M (2000) Biochem J 348:321–328

    Article  PubMed  CAS  Google Scholar 

  34. Welinder KG, Jespersen HM, Kjærsgård IVH, Østergaard L, Abelskov AK, Hansen LN, Rasmussen SK (1996) In: Obinger C, Burner U, Ebermann R, Penel C, Greppin H (eds) Plant peroxidases: biochemistry and physiology. University of Geneva, Geneva, pp 173–178

    Google Scholar 

  35. Jespersen HM, Kjærsgård IVH, Østergaard L, Welinder KG (1997) Biochem J 326:305–310

    PubMed  CAS  Google Scholar 

  36. Welinder KG (1992) In: Penel C, Gaspar Th, Greppin H (eds) Plant peroxidases 1980–1990. Topics and detailed literature on molecular, biochemical, and physiological aspects. University of Geneva, Geneva, pp 1–24

    Google Scholar 

  37. Yamasaki H, Sakihama Y, Ikehara N (1997) Plant Physiol 115:1405–1412

    PubMed  CAS  Google Scholar 

  38. Salin ML (1987) Physiol Plant 72:681–689

    Article  Google Scholar 

  39. Mizuno M, Kamei M, Tsuchida H (1998) Biochem Mol Biol Int 44:717–726

    PubMed  CAS  Google Scholar 

  40. Hernández-Ruíz J, Rodríguez-López JN, García-Cánovas F, Acosta M, Arnao MB (2000) Biochim Biophys Acta 1478:78–88

    Article  PubMed  Google Scholar 

  41. Mittler R, Feng X, Cohen M (1998) Plant Cell 10:461–473

    PubMed  CAS  Google Scholar 

  42. Mittler R, Hallak Herr E, Larus Orvar B, van Camp W, Willekens H, Inzé D, Ellis BE (1999) Proc Natl Acad Sci USA 96:14165–14170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Acosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiner, A.N.P., Hernández-Ruiz, J., Rodríguez-López, J.N. et al. The inactivation of horseradish peroxidase isoenzyme AZ by hydrogen peroxide: an example of partial resistance due to the formation of a stable enzyme intermediate. JBIC 6, 504–516 (2001). https://doi.org/10.1007/s007750100219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s007750100219

Keywords

Navigation