Skip to main content
Log in

Zinc protoporphyrin–trimethylamine-N-oxide complex involves cholesterol oxidation causing atherosclerosis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metabolism of food protein by gut microbes produce trimethylamine which on oxidation by hepatic flavin-containing monooxygenases is transformed to trimethylamine-N-oxide (TMAO). TMAO has recently been implicated as a biomarker for atherosclerosis. TMAO, as (CH3)3N+–O), is ionic and so a hydrophilic molecule that is freely available in blood plasma. For the effective interaction with lipid-soluble molecules, TMAO should be phase transferred to the lipid site. We show that the free TMAO is effectively bonded to zinc protoporphyrin IX dimethyl ester [ZnPPDME] to yield [TMAOZnPPDME] using phase transfer reaction. The zinc protoporphyrin IX, [ZnPP], in general, available in blood may form [TMAOZnPP] complex. The nature of such interaction between TMAO and [ZnPP] has been structurally shown using a model complex, [TMAOZnTPP] (TPP = tetraphenylporphyrin). These complexes readily move from the polar plasma to the non-polar (lipid) site to act as the oxo-transfer agent to oxidize cholesterol causing atherosclerosis. Chromatographic and circular dichroism (CD) studies show that either TMAO or [ZnPP] alone cannot oxidize cholesterol.

Graphic abstract

Free TMAO bonded with zinc-protoporphyrin IX, [ZnPP], in blood plasma as [TMAOZnPP] is transported to the lipid site and this is the reacting species to oxidize cholesterol causing atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tang WHW, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cho CE, Caudill MA (2017) Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endrocrinol Metab 28:121–130

    Article  CAS  Google Scholar 

  4. Luc G, Fruchart JC (1991) Oxidation of lipoproteins and atherosclerosis. Am J Clin Nutr 53:206S-209S

    Article  PubMed  CAS  Google Scholar 

  5. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Investig 88:1785–1792

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Jialal I, Devaraj S (1996) Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clin Chem 42:498–506

    Article  PubMed  CAS  Google Scholar 

  7. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  8. Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis. N Engl J Med 295:369–377

    Article  PubMed  CAS  Google Scholar 

  9. Jonasson L, Holm J, Skalli O et al (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138

    Article  PubMed  CAS  Google Scholar 

  10. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  11. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  PubMed  CAS  Google Scholar 

  12. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Libby P (2000) Changing concepts of atherogenesis. J Intern Med 247:349–358

    Article  PubMed  CAS  Google Scholar 

  14. Bäckhed F (2013) Meat-metabolizing bacteria in atherosclerosis. Nat Med 19:533–534

    Article  PubMed  Google Scholar 

  15. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100

    Article  PubMed  CAS  Google Scholar 

  17. Cho CE, Taesuwan S, Malysheva OV et al (2017) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res 61:1770016

    Article  Google Scholar 

  18. Bordoni L, Sawicka AK et al (2020) A pilot study on the effects of l-carnitine and trimethylamine-N-oxide on platelet mitochondrial DNA methylation and CVD biomarkers in aged women. Int J Mol Sci 21:1047

    Article  PubMed Central  CAS  Google Scholar 

  19. Papandreou C, Moré M, Bellamine A (2020) Trimethylamine N-oxide in relation to cardiometabolic health—cause or effect? Nutrients 12:1330

    Article  PubMed Central  CAS  Google Scholar 

  20. Velasquez MT, Ramezani A, Manal A et al (2016) Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel) 8:326

    Article  Google Scholar 

  21. Subramaniam S, Fletcher C (2018) Trimethylamine N-oxide: breathe new life. Br J Pharmacol 175:1344–1353

    Article  PubMed  CAS  Google Scholar 

  22. Jaworska K, Hering D et al (2019) TMA, a forgotten uremic toxin, but not TMAO, is involved in cardiovascular pathology. Toxins 11:490

    Article  PubMed Central  CAS  Google Scholar 

  23. Bordoni L, Samulak JJ et al (2020) Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: a cross-sectional study. Sci Rep 10:18675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bordoni L, Fedeli D, Piangerelli M et al (2020) Gender-related differences in trimethylamine and oxidative blood biomarkers in cardiovascular disease patients. Biomedicines 8:238

    Article  PubMed Central  CAS  Google Scholar 

  25. Poli G, Sottero B, Gargiulo S et al (2009) Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Mol Aspects Med 30:180–189

    Article  PubMed  CAS  Google Scholar 

  26. Javitt NB (1994) Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J 8:1308–1311

    Article  PubMed  CAS  Google Scholar 

  27. Labbe RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: a metabolite with a mission. Clin Chem 45:2060–2072

    Article  PubMed  CAS  Google Scholar 

  28. Labbé RF (1992) Clinical utility of zinc protoporphyrin. Clin Chem 38:2167–2168

    Article  PubMed  Google Scholar 

  29. Lamola AA, Eisinger J, Blumberg WE (1980) Erythrocyte protoporphyrin/heme ratio by hematofluorometry. Clin Chem 26:677–678

    Article  PubMed  CAS  Google Scholar 

  30. Cheng C, Noordeloos AM, Jeney V et al (2009) Heme oxygenase 1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation 119:3017–3027

    Article  PubMed  CAS  Google Scholar 

  31. Sevanian A, McLeod LL (1987) Cholesterol autoxidation in phospholipid membrane bilayers. Lipids 22:627–636

    Article  PubMed  CAS  Google Scholar 

  32. Smith LL, Johnson BH (1989) Biological activities of oxysterols. Free Radic Biol Med 7:285–332

    Article  PubMed  CAS  Google Scholar 

  33. Guardiola F, Codony R, Addis PB et al (1996) Biological effects of oxysterols: current status. Food Chem Toxicol 34:193–211

    Article  PubMed  CAS  Google Scholar 

  34. Russell DW (2000) Oxysterol biosynthetic enzymes. Biochim Biophys Acta 1529:126–135

    Article  PubMed  CAS  Google Scholar 

  35. Sottero B, Gamba P, Gargiulo S et al (2009) Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Curr Med Chem 16:685–705

    Article  PubMed  CAS  Google Scholar 

  36. Bitman J, Wood DL (1982) J Liq Chromatogr 5:1155–1162

    Article  CAS  Google Scholar 

  37. Lebovics VK (2002) In cholesterol and phytosterol oxidation products. AOCS Publishing, pp 105–117

    Google Scholar 

  38. Kumar A, Maji S, Dubey P, Abhilash G, Pandey S, Sarkar S (2007) Tetrahedron Lett 48:7287

    Article  CAS  Google Scholar 

  39. Fuhrhop JH, Smith KM (1975) In porphyrins and metalloporphyrins (edited by K. M. Smith). Elsevier, Amsterdam, p 798

    Google Scholar 

  40. Sarkar R (2012) PhD Thesis. Dept. of Chemistry, IIT Kanpur, p 60

  41. Berto TC, Praneeth VKK, Goodrich LE et al (2009) Iron-Porphyrin NO complexes with covalently attached N-donor ligands: formation of a stable six-coordinate species in solution. J Am Chem Soc 131:17116–17126

    Article  PubMed  CAS  Google Scholar 

  42. Lebovics VK (2002) Determination of cholesterol oxidation products by thin-layer chromatography. AOCS Publishing, pp 105–117

    Google Scholar 

  43. Moula G, Bose M, Sarkar S (2013) Replica of a fishy enzyme: structure-function analogue of trimethylamine-N-oxide reductase. Inorg Chem 52:5316–5327

    Article  PubMed  CAS  Google Scholar 

  44. Tanekazu K, Hiroshi M (1962) Polarography of pyridine N-oxide and its alkyl derivatives. Bull Chem Soc Jpn 35:1549–1551

    Article  Google Scholar 

  45. Ochiai E (1967) Aromatic amine oxides. Elsevier, Amsterdam, pp 6–17 (91–97)

    Google Scholar 

  46. Simala-Grant JL, Weiner JH (1996) Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology 142:3231–3239

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by SERB-DST (EMR/2015/001328), New. Delhi, to SS. NP is thankful to CSIR (08/003/0108(2015)-EMR-I), New Delhi for a SRF and RS is thankful to UGC, New Delhi, for granting him a DS Kothari Post-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Sarkar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1574 KB)

Supplementary file2 (PDF 146 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, N., Sarkar, R. & Sarkar, S. Zinc protoporphyrin–trimethylamine-N-oxide complex involves cholesterol oxidation causing atherosclerosis. J Biol Inorg Chem 26, 367–374 (2021). https://doi.org/10.1007/s00775-021-01861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01861-z

Keywords

Navigation