Skip to main content

Advertisement

Log in

Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy

  • Mini Review
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Photodynamic therapy is a light-activated medical technique, which has received increasing attention within the last decade to treat various diseases including bacterial, viral or fungal infections as well as cancer. To overcome the limitations of the currently clinically applied photosensitizers based on a tetrapyrrolic scaffold, metal complexes are sought to be an interesting alternative. While these complexes show attractive photophysical and biological properties, the majority of these compounds are excited using visible light, which is associated with a poor tissue penetration. To circumvent this drawback, increasing attention has been devoted towards the use of 2-Photon instead of 1-Photon irradiation. In this mini-review, the metal complexes prepared in view of 2P-PDT are reviewed and the requirements these compounds need to fulfil to be of interest are critically discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387. https://doi.org/10.1038/nrc1071

    Article  CAS  PubMed  Google Scholar 

  2. Bonnet S (2018) Why develop photoactivated chemotherapy? Dalton Trans 47(31):10330–10343. https://doi.org/10.1039/C8DT01585F

    Article  CAS  PubMed  Google Scholar 

  3. Dumoulin F (2017) Perfect photosensitisers? More than ever an exciting challenge! Photodiagnosis Photodyn Ther 100(17):A4

    Article  Google Scholar 

  4. Mahmoudi H, Bahador A, Pourhajibagher M, Alikhani MY (2018) Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. J Lasers Med Sci 9(3):154–160

    Article  Google Scholar 

  5. Jaber G, Dariush R, Shahin A, Alireza T, Abbas B (2018) Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther 27(4):293–302. https://doi.org/10.5978/islsm.27_18-RA-01

    Article  Google Scholar 

  6. Rajesh S, Koshi E, Philip K, Mohan A (2011) Antimicrobial photodynamic therapy: an overview. J Indian Soc Periodontol 15(4):323

    Article  CAS  Google Scholar 

  7. Kharkwal GB, Sharma SK, Huang Y-Y, Dai T, Hamblin MR (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43(7):755–767. https://doi.org/10.1002/lsm.21080

    Article  PubMed  PubMed Central  Google Scholar 

  8. Costa L, Faustino MAF, Neves MGP, Cunha Â, Almeida A (2012) Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses 4(7):1034–1074

    Article  Google Scholar 

  9. Wiehe A, O’Brien JM, Senge MO (2019) Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 18(11):2565–2612. https://doi.org/10.1039/C9PP00211A

    Article  CAS  PubMed  Google Scholar 

  10. Shen JJ, Jemec GBE, Arendrup MC, Saunte DML (2020) Photodynamic therapy treatment of superficial fungal infections: a systematic review. Photodiagnosis Photodyn Ther 31:101774. https://doi.org/10.1016/j.pdpdt.2020.101774

    Article  CAS  PubMed  Google Scholar 

  11. Liang Y, Lu LM, Chen Y, Lin YK (2016) Photodynamic therapy as an antifungal treatment. Exp Ther Med 12(1):23–27

    Article  CAS  Google Scholar 

  12. Tegos G, Dai T, Fuchs B, Coleman J, Prates R, Astrakas C, St Denis T, Ribeiro M, Mylonakis E, Hamblin M (2012) Concepts and Principles of Photodynamic Therapy as an Alternative Antifungal Discovery Platform. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00120

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic Therapy J Natl Cancer I 90(12):889–905. https://doi.org/10.1093/jnci/90.12.889

    Article  CAS  Google Scholar 

  14. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. https://doi.org/10.3322/caac.20114

    Article  PubMed  PubMed Central  Google Scholar 

  15. Callaghan S, Senge MO (2018) The good, the bad, and the ugly–controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem Photobiol Sci 17(11):1490–1514. https://doi.org/10.1039/C8PP00008E

    Article  CAS  PubMed  Google Scholar 

  16. Senge MO, Radomski MW (2013) Platelets, photosensitizers, and PDT. Photodiagnosis Photodyn Ther 10(1):1–16. https://doi.org/10.1016/j.pdpdt.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  17. O’Connor AE, Gallagher WM, Byrne AT (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 85(5):1053–1074. https://doi.org/10.1111/j.1751-1097.2009.00585.x

    Article  CAS  PubMed  Google Scholar 

  18. Heinemann F, Karges J, Gasser G (2017) Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc Chem Res 50(11):2727–2736. https://doi.org/10.1021/acs.accounts.7b00180

    Article  CAS  PubMed  Google Scholar 

  19. Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F (2020) The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev 49(4):1041–1056. https://doi.org/10.1039/C9CS00129H

    Article  CAS  PubMed  Google Scholar 

  20. Mang TS, Allison R, Hewson G, Snider W, Moskowitz R (1998) A phase II/III clinical study of tin ethyl etiopurpurin (Purlytin)-induced photodynamic therapy for the treatment of recurrent cutaneous metastatic breast cancer. Cancer J Sci Am 4(6):378–384

    CAS  PubMed  Google Scholar 

  21. Rockson SG, Kramer P, Razavi M, Szuba A, Filardo S, Fitzgerald P, Cooke JP, Yousuf S, DeVault AR, Renschler MF, Adelman DC (2000) Photoangioplasty for human peripheral atherosclerosis. Circulation 102(19):2322–2324. https://doi.org/10.1161/01.CIR.102.19.2322

    Article  CAS  PubMed  Google Scholar 

  22. Miles D (1998) Evaluation of light transmission in blood with the photoangioplasty agent (ANTRIN) photosensitizer, vol 3245. Lasers in surgery: advanced characterization, therapeutics, and systems VIII. In: Proc. SPIE. https://doi.org/10.1117/12.312304

  23. Azzouzi A-R, Lebdai S, Benzaghou F, Stief C (2015) Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: standardization of the procedure. World J Urol 33(7):937–944. https://doi.org/10.1007/s00345-015-1535-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azzouzi AR, Barret E, Bennet J, Moore C, Taneja S, Muir G, Villers A, Coleman J, Allen C, Scherz A, Emberton M (2015) TOOKAD® Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J Urol 33(7):945–953. https://doi.org/10.1007/s00345-015-1505-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brilkina AA, Dubasova LV, Sergeeva EA, Pospelov AJ, Shilyagina NY, Shakhova NM, Balalaeva IV (2019) Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: a comparative in vitro analysis. J Photochem Photobiol B 191:128–134. https://doi.org/10.1016/j.jphotobiol.2018.12.020

    Article  CAS  PubMed  Google Scholar 

  26. Zharkova N, Kozlov D, Smirnov V, Sokolov V, Chissov V, Filonenko E, Sukhin G, Galpern M, Vorozhtsov G (1995) Fluorescence observations of patients in the course of photodynamic therapy of cancer with the photosensitizer PHOTOSENS. Proc SPIE. https://doi.org/10.1117/12.199176

    Article  Google Scholar 

  27. McFarland SA, Mandel A, Dumoulin-White R, Gasser G (2020) Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology? Curr Opin Chem Biol 56:23–27. https://doi.org/10.1016/j.cbpa.2019.10.004

    Article  CAS  PubMed  Google Scholar 

  28. Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA (2019) Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem Rev 119(2):797–828. https://doi.org/10.1021/acs.chemrev.8b00211

    Article  CAS  PubMed  Google Scholar 

  29. Ramu V, Gautam S, Garai A, Kondaiah P, Chakravarty AR (2018) Glucose-appended platinum(II)-BODIPY conjugates for targeted photodynamic therapy in red light. Inorg Chem 57(4):1717–1726. https://doi.org/10.1021/acs.inorgchem.7b02249

    Article  CAS  PubMed  Google Scholar 

  30. Zhou C-H, Zhao X (2011) Theoretical investigation on quinoline-based platinum (II) complexes as efficient singlet oxygen photosensitizers in photodynamic therapy. J Organomet Chem 696(21):3322–3327. https://doi.org/10.1016/j.jorganchem.2011.07.003

    Article  CAS  Google Scholar 

  31. Chatzisideri T, Thysiadis S, Katsamakas S, Dalezis P, Sigala I, Lazarides T, Nikolakaki E, Trafalis D, Gederaas OA, Lindgren M, Sarli V (2017) Synthesis and biological evaluation of a Platinum(II)-c(RGDyK) conjugate for integrin-targeted photodynamic therapy. Eur J Inorg Chem 141:221–231. https://doi.org/10.1016/j.ejmech.2017.09.058

    Article  CAS  Google Scholar 

  32. Zhou J, Zhang Y, Yu G, Crawley MR, Fulong CRP, Friedman AE, Sengupta S, Sun J, Li Q, Huang F, Cook TR (2018) Highly emissive self-assembled BODIPY-platinum supramolecular triangles. J Am Chem Soc 140(24):7730–7736. https://doi.org/10.1021/jacs.8b04929

    Article  CAS  PubMed  Google Scholar 

  33. Doherty RE, Sazanovich IV, McKenzie LK, Stasheuski AS, Coyle R, Baggaley E, Bottomley S, Weinstein JA, Bryant HE (2016) Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand. Sci Rep 6(1):22668. https://doi.org/10.1038/srep22668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shavaleev NM, Adams H, Best J, Edge R, Navaratnam S, Weinstein JA (2006) Deep-red luminescence and efficient singlet oxygen generation by cyclometalated platinum(II) complexes with 8-hydroxyquinolines and quinoline-8-thiol. Inorg Chem 45(23):9410–9415. https://doi.org/10.1021/ic061283k

    Article  CAS  PubMed  Google Scholar 

  35. Guo D, Xu S, Huang Y, Jiang H, Yasen W, Wang N, Su Y, Qian J, Li J, Zhang C, Zhu X (2018) Platinum(IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials 177:67–77. https://doi.org/10.1016/j.biomaterials.2018.05.052

    Article  CAS  PubMed  Google Scholar 

  36. Vallotto C, Shaili E, Shi H, Butler JS, Wedge CJ, Newton ME, Sadler PJ (2018) Photoactivatable platinum anticancer complex can generate tryptophan radicals. ChemComm 54(98):13845–13848. https://doi.org/10.1039/C8CC06496B

    Article  CAS  Google Scholar 

  37. Wootton CA, Sanchez-Cano C, Lopez-Clavijo AF, Shaili E, Barrow MP, Sadler PJ, O’Connor PB (2018) Sequence-dependent attack on peptides by photoactivated platinum anticancer complexes. Chem Sci 9(10):2733–2739. https://doi.org/10.1039/C7SC05135B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kratochwil NA, Parkinson JA, Bednarski PJ, Sadler PJ (1999) Nucleotide platination induced by visible light. Angew Chem Int Ed 38(10):1460–1463. https://doi.org/10.1002/(sici)1521-3773(19990517)38:10%3c1460::Aid-anie1460%3e3.0.Co;2-z

    Article  CAS  Google Scholar 

  39. Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen Z-S (2017) The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 46(19):5771–5804. https://doi.org/10.1039/C7CS00195A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soliman N, McKenzie LK, Karges J, Bertrand E, Tharaud M, Jakubaszek M, Guérineau V, Goud B, Hollenstein M, Gasser G, Thomas CM (2020) Ruthenium-initiated polymerization of lactide: a route to remarkable cellular uptake for photodynamic therapy of cancer. Chem Sci 11(10):2657–2663. https://doi.org/10.1039/C9SC05976H

    Article  CAS  Google Scholar 

  41. Li A, Turro C, Kodanko JJ (2018) Ru(II) polypyridyl complexes derived from tetradentate ancillary ligands for effective photocaging. Acc Chem Res 51(6):1415–1421. https://doi.org/10.1021/acs.accounts.8b00066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T (2017) The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 46(24):7706–7756. https://doi.org/10.1039/C7CS00680B

    Article  CAS  PubMed  Google Scholar 

  43. Shum J, Leung PK-K, Lo KK-W (2019) Luminescent ruthenium(II) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg Chem 58(4):2231–2247. https://doi.org/10.1021/acs.inorgchem.8b02979

    Article  CAS  PubMed  Google Scholar 

  44. Lincoln R, Kohler L, Monro S, Yin H, Stephenson M, Zong R, Chouai A, Dorsey C, Hennigar R, Thummel RP, McFarland SA (2013) Exploitation of long-lived 3IL excited states for metal-organic photodynamic therapy: verification in a metastatic melanoma model. J Am Chem Soc 135(45):17161–17175. https://doi.org/10.1021/ja408426z

    Article  CAS  PubMed  Google Scholar 

  45. Howerton BS, Heidary DK, Glazer EC (2012) Strained ruthenium complexes are potent light-activated anticancer agents. J Am Chem Soc 134(20):8324–8327. https://doi.org/10.1021/ja3009677

    Article  CAS  PubMed  Google Scholar 

  46. Karges J, Heinemann F, Maschietto F, Patra M, Blacque O, Ciofini I, Spingler B, Gasser G (2019) A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorg Med Chem 27(12):2666–2675. https://doi.org/10.1016/j.bmc.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  47. Karges J, Blacque O, Jakubaszek M, Goud B, Goldner P, Gasser G (2019) Systematic investigation of the antiproliferative activity of a series of ruthenium terpyridine complexes. J Inorg Biochem 198:110752. https://doi.org/10.1016/j.jinorgbio.2019.110752

    Article  CAS  PubMed  Google Scholar 

  48. Lameijer LN, Hopkins SL, Brevé TG, Askes SHC, Bonnet S (2016) d- Versus l-glucose conjugation: mitochondrial targeting of a light-activated dual-mode-of-action ruthenium-based anticancer prodrug. Chem Eur J 22(51):18484–18491. https://doi.org/10.1002/chem.201603066

    Article  CAS  PubMed  Google Scholar 

  49. Renfrew AK, Karges J, Scopelliti R, Bobbink FD, Nowak-Sliwinska P, Gasser G, Dyson PJ (2019) Towards light-activated ruthenium-arene (RAPTA-Type) prodrug candidates. ChemBioChem 20(22):2876–2882. https://doi.org/10.1002/cbic.201900236

    Article  CAS  PubMed  Google Scholar 

  50. Wachter E, Heidary DK, Howerton BS, Parkin S, Glazer EC (2012) Light-activated ruthenium complexes photobind DNA and are cytotoxic in the photodynamic therapy window. ChemComm 48(77):9649–9651. https://doi.org/10.1039/C2CC33359G

    Article  CAS  Google Scholar 

  51. Ballester FJ, Ortega E, Bautista D, Santana MD, Ruiz J (2020) Ru(ii) photosensitizers competent for hypoxic cancers via green light activation. ChemComm. https://doi.org/10.1039/D0CC02417A

    Article  Google Scholar 

  52. Jarman PJ, Noakes F, Fairbanks S, Smitten K, Griffiths IK, Saeed HK, Thomas JA, Smythe C (2019) Exploring the Cytotoxicity, uptake, cellular response, and proteomics of mono- and dinuclear DNA light-switch complexes. J Am Chem Soc 141(7):2925–2937. https://doi.org/10.1021/jacs.8b09999

    Article  CAS  PubMed  Google Scholar 

  53. Karges J (2020) Combining inorganic chemistry and biology: the underestimated potential of metal complexes in medicine. ChemBioChem. https://doi.org/10.1002/cbic.202000397

    Article  PubMed  Google Scholar 

  54. Lazic S, Kaspler P, Shi G, Monro S, Sainuddin T, Forward S, Kasimova K, Hennigar R, Mandel A, McFarland S, Lilge L (2017) Novel Osmium-based Coordination Complexes as Photosensitizers for Panchromatic Photodynamic Therapy. Photochem Photobiol 93(5):1248–1258. https://doi.org/10.1111/php.12767

    Article  CAS  PubMed  Google Scholar 

  55. Zhang P, Wang Y, Qiu K, Zhao Z, Hu R, He C, Zhang Q, Chao H (2017) A NIR phosphorescent osmium(ii) complex as a lysosome tracking reagent and photodynamic therapeutic agent. ChemComm 53(91):12341–12344. https://doi.org/10.1039/C7CC07776A

    Article  CAS  Google Scholar 

  56. Roque J, Barrett PC, Cole HD, Lifshits L, Shi G, Monro S, von Dohlen D, Kim S, Russo N, Deep G, Albertome CGC, McFarland SA (2020) Breaking the Barrier: An Osmium Photosensitizer with Unprecedented Hypoxic Phototoxicity for Real World Photodynamic Therapy. Chem Sci. https://doi.org/10.1039/D0SC03008B

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang P, Huang H (2018) Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 47(42):14841–14854. https://doi.org/10.1039/C8DT03432J

    Article  CAS  PubMed  Google Scholar 

  58. Sun Y, Joyce LE, Dickson NM, Turro C (2010) DNA photocleavage by an osmium(ii) complex in the PDT window. ChemComm 46(36):6759–6761. https://doi.org/10.1039/C0CC02571B

    Article  CAS  Google Scholar 

  59. Pan Z-Y, Cai D-H, He L (2020) Dinuclear phosphorescent rhenium(i) complexes as potential anticancer and photodynamic therapy agents. Dalton Trans. https://doi.org/10.1039/D0DT02424D

    Article  PubMed  Google Scholar 

  60. Wähler K, Ludewig A, Szabo P, Harms K, Meggers E (2014) rhenium complexes with red-light-induced anticancer activity. Eur J Inorg Chem 5:807–811. https://doi.org/10.1002/ejic.201301474

    Article  CAS  Google Scholar 

  61. Kastl A, Dieckmann S, Wähler K, Völker T, Kastl L, Merkel AL, Vultur A, Shannan B, Harms K, Ocker M, Parak WJ, Herlyn M, Meggers E (2013) Rhenium complexes with visible-light-induced anticancer activity. ChemMedChem 8(6):924–927. https://doi.org/10.1002/cmdc.201300060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Capper MS, Enriquez Garcia A, Macia N, Lai B, Lin J-B, Nomura M, Alihosseinzadeh A, Ponnurangam S, Heyne B, Shemanko CS, Jalilehvand F (2020) Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives. J Biol Inorg Chem. https://doi.org/10.1007/s00775-020-01798-9

    Article  PubMed  Google Scholar 

  63. Lee LC-C, Leung K-K, Lo KK-W (2017) Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 46(47):16357–16380. https://doi.org/10.1039/C7DT03465B

    Article  CAS  PubMed  Google Scholar 

  64. Bauer EB, Haase AA, Reich RM, Crans DC, Kühn FE (2019) Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord Chem Rev 393:79–117. https://doi.org/10.1016/j.ccr.2019.04.014

    Article  CAS  Google Scholar 

  65. Nam JS, Kang M-G, Kang J, Park S-Y, Lee SJC, Kim H-T, Seo JK, Kwon O-H, Lim MH, Rhee H-W, Kwon T-H (2016) Endoplasmic reticulum-localized iridium(III) complexes as efficient photodynamic therapy agents via protein modifications. J Am Chem Soc 138(34):10968–10977. https://doi.org/10.1021/jacs.6b05302

    Article  CAS  PubMed  Google Scholar 

  66. Wang F-X, Chen M-H, Lin Y-N, Zhang H, Tan C-P, Ji L-N, Mao Z-W (2017) Dual functions of cyclometalated iridium(III) complexes: anti-metastasis and lysosome-damaged photodynamic therapy. ACS Appl Mater Inter 9(49):42471–42481. https://doi.org/10.1021/acsami.7b10258

    Article  CAS  Google Scholar 

  67. Li Y, Tan C-P, Zhang W, He L, Ji L-N, Mao Z-W (2015) Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials 39:95–104. https://doi.org/10.1016/j.biomaterials.2014.10.070

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Liu B, Lu X-R, Li M-F, Ji L-N, Mao Z-W (2017) Cyclometalated iridium(iii) N-heterocyclic carbene complexes as potential mitochondrial anticancer and photodynamic agents. Dalton Trans 46(34):11363–11371. https://doi.org/10.1039/C7DT01903C

    Article  CAS  PubMed  Google Scholar 

  69. Lv W, Zhang Z, Zhang KY, Yang H, Liu S, Xu A, Guo S, Zhao Q, Huang W (2016) A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew Chem Int Ed 55(34):9947–9951. https://doi.org/10.1002/anie.201604130

    Article  CAS  Google Scholar 

  70. Lo KK-W, Law WH-T, Chan JC-Y, Liu H-W, Zhang KY (2013) Photophysical and cellular uptake properties of novel phosphorescent cyclometalated iridium(iii) bipyridine d-fructose complexes. Metallomics 5(7):808–812. https://doi.org/10.1039/C3MT20276C

    Article  CAS  PubMed  Google Scholar 

  71. Tang TS-M, Leung K-K, Louie M-W, Liu H-W, Cheng SH, Lo KK-W (2015) Phosphorescent biscyclometallated iridium(iii) ethylenediamine complexes functionalised with polar ester or carboxylate groups as bioimaging and visualisation reagents. Dalton Trans 44(11):4945–4956. https://doi.org/10.1039/C4DT02890B

    Article  CAS  PubMed  Google Scholar 

  72. Novohradsky V, Vigueras G, Pracharova J, Cutillas N, Janiak C, Kostrhunova H, Brabec V, Ruiz J, Kasparkova J (2019) Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(iii) complexes. Inorg Chem Front 6(9):2500–2513. https://doi.org/10.1039/C9QI00811J

    Article  CAS  Google Scholar 

  73. Novohradsky V, Rovira A, Hally C, Galindo A, Vigueras G, Gandioso A, Svitelova M, Bresolí-Obach R, Kostrhunova H, Markova L, Kasparkova J, Nonell S, Ruiz J, Brabec V, Marchán V (2019) towards novel photodynamic anticancer agents generating superoxide anion radicals: a cyclometalated IrIII complex conjugated to a far-red emitting coumarin. Angew Chem Int Ed 58(19):6311–6315. https://doi.org/10.1002/anie.201901268

    Article  CAS  Google Scholar 

  74. Fong J, Kasimova K, Arenas Y, Kaspler P, Lazic S, Mandel A, Lilge L (2015) A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochem Photobiol Sci 14(11):2014–2023. https://doi.org/10.1039/C4PP00438H

    Article  CAS  PubMed  Google Scholar 

  75. Kaspler P, Lazic S, Forward S, Arenas Y, Mandel A, Lilge L (2016) A ruthenium(ii) based photosensitizer and transferrin complexes enhance photo-physical properties, cell uptake, and photodynamic therapy safety and efficacy. Photochem Photobiol Sci 15(4):481–495. https://doi.org/10.1039/C5PP00450K

    Article  CAS  PubMed  Google Scholar 

  76. Ogawa K, Kobuke Y (2008) Recent advances in two-photon photodynamic therapy. Anti-Cancer Agents Med Chem 8(3):269–279

    Article  CAS  Google Scholar 

  77. Wilson BC, Jeeves WP, Lowe DM (1985) In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 42(2):153–162. https://doi.org/10.1111/j.1751-1097.1985.tb01554.x

    Article  CAS  PubMed  Google Scholar 

  78. Collins J (2011) Two-photon absorption and applications to biological systems. Biophotonics: spectroscopy, imaging, sensing, and manipulation. Springer, Netherlands, Dordrecht

    Google Scholar 

  79. Wang B-G, König K, Halbhuber K-J (2010) Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc 238(1):1–20. https://doi.org/10.1111/j.1365-2818.2009.03330.x

    Article  CAS  PubMed  Google Scholar 

  80. Benninger RKP, Piston DW (2013) Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol 59(1):4.11.11-14.11.24. https://doi.org/10.1002/0471143030.cb0411s59

    Article  Google Scholar 

  81. Tauer U (2002) Advantages and risks of multiphoton microscopy in physiology. Exp Physiol 87(6):709–714. https://doi.org/10.1113/eph8702464

    Article  PubMed  Google Scholar 

  82. Lenz P (1995) In vivo excitation of photosensitizers by infrared light. Photochem Photobiol 62(2):333–338. https://doi.org/10.1111/j.1751-1097.1995.tb05277.x

    Article  CAS  PubMed  Google Scholar 

  83. Marchesini R, Melloni E, Fava G, Pezzoni G, Savi G, Zunino F, Docchio F (1986) A study on the possible involvement of nonlinear mechanism of light absorption by HpD with Nd: YAG laser. Lasers Surg Med 6(3):323–327. https://doi.org/10.1002/lsm.1900060306

    Article  CAS  PubMed  Google Scholar 

  84. Bolze F, Jenni S, Sour A, Heitz V (2017) Molecular photosensitisers for two-photon photodynamic therapy. ChemComm 53(96):12857–12877. https://doi.org/10.1039/C7CC06133A

    Article  CAS  Google Scholar 

  85. Karotki A, Khurana M, Lepock JR, Wilson BC (2006) Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy. Photochem Photobiol 82(2):443–452. https://doi.org/10.1562/2005-08-24-ra-657

    Article  CAS  PubMed  Google Scholar 

  86. Samkoe K, Clancy A, Karotki A, Wilson B, Cramb D (2007) Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration. J Biomed Opt 12(3):034025. https://doi.org/10.1117/1.2750663

    Article  CAS  PubMed  Google Scholar 

  87. Jin C, Liang F, Wang J, Wang L, Liu J, Liao X, Rees TW, Yuan B, Wang H, Shen Y, Pei Z, Ji L, Chao H (2020) Rational design of cyclometalated iridium(III) complexes for three-photon phosphorescence bioimaging. Angew Chem Int Ed. https://doi.org/10.1002/anie.202006964

    Article  Google Scholar 

  88. Fan Y, Ding D, Zhao D (2015) Two- and three-photon absorption and excitation phosphorescence of oligofluorene-substituted Ir(ppy)3. ChemComm 51(16):3446–3449. https://doi.org/10.1039/C4CC09573A

    Article  CAS  Google Scholar 

  89. Massue J, Olesiak-Banska J, Jeanneau E, Aronica C, Matczyszyn K, Samoc M, Monnereau C, Andraud C (2013) Remarkable effect of iridium cyclometalation on the nonlinear absorption properties of a quadrupolar imine ligand. Inorg Chem 52(19):10705–10707. https://doi.org/10.1021/ic4012313

    Article  CAS  PubMed  Google Scholar 

  90. Arnbjerg J, Jiménez-Banzo A, Paterson MJ, Nonell S, Borrell JI, Christiansen O, Ogilby PR (2007) Two-photon absorption in tetraphenylporphycenes: are porphycenes better candidates than porphyrins for providing optimal optical properties for two-photon photodynamic therapy? J Am Chem Soc 129(16):5188–5199. https://doi.org/10.1021/ja0688777

    Article  CAS  PubMed  Google Scholar 

  91. Ogawa K, Hasegawa H, Inaba Y, Kobuke Y, Inouye H, Kanemitsu Y, Kohno E, Hirano T, Ogura S-i, Okura I (2006) Water-soluble Bis(imidazolylporphyrin) self-assemblies with large two-photon absorption cross sections as potential agents for photodynamic therapy. J Med Chem 49(7):2276–2283. https://doi.org/10.1021/jm051072+

    Article  CAS  PubMed  Google Scholar 

  92. Collins HA, Khurana M, Moriyama EH, Mariampillai A, Dahlstedt E, Balaz M, Kuimova MK, Drobizhev M, Yang VXD, Phillips D, Rebane A, Wilson BC, Anderson HL (2008) Blood-vessel closure using photosensitizers engineered for two-photon excitation. Nat Photon 2(7):420–424. https://doi.org/10.1038/nphoton.2008.100

    Article  CAS  Google Scholar 

  93. Starkey JR, Rebane AK, Drobizhev MA, Meng F, Gong A, Elliott A, McInnerney K, Spangler CW (2008) New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clin Cancer Res 14(20):6564–6573. https://doi.org/10.1158/1078-0432.Ccr-07-4162

    Article  CAS  PubMed  Google Scholar 

  94. Spangler C, Starkey J, Rebane A, Meng F, Gong A, Drobizhev M (2006) Synthesis, characterization, and preclinical studies of two-photon-activated targeted PDT therapeutic triads. SPIE BiOS. https://doi.org/10.1117/12.646312

    Article  Google Scholar 

  95. Oar MA, Dichtel WR, Serin JM, Fréchet JMJ, Rogers JE, Slagle JE, Fleitz PA, Tan L-S, Ohulchanskyy TY, Prasad PN (2006) Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET. Chem Mater 18(16):3682–3692. https://doi.org/10.1021/cm0606070

    Article  CAS  Google Scholar 

  96. Khurana M, Collins HA, Karotki A, Anderson HL, Cramb DT, Wilson BC (2007) Quantitative in vitro demonstration of two-photon photodynamic therapy using Photofrin® and Visudyne®. Photochem Photobiol 83(6):1441–1448. https://doi.org/10.1111/j.1751-1097.2007.00185.x

    Article  CAS  PubMed  Google Scholar 

  97. Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675. https://doi.org/10.1021/ja0680257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Secret E, Maynadier M, Gallud A, Chaix A, Bouffard E, Gary-Bobo M, Marcotte N, Mongin O, El Cheikh K, Hugues V, Auffan M, Frochot C, Morère A, Maillard P, Blanchard-Desce M, Sailor MJ, Garcia M, Durand J-O, Cunin F (2014) Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy. Adv Mater 26(45):7643–7648. https://doi.org/10.1002/adma.201403415

    Article  CAS  PubMed  Google Scholar 

  99. Chaix A, El Cheikh K, Bouffard E, Maynadier M, Aggad D, Stojanovic V, Knezevic N, Garcia M, Maillard P, Morère A, Gary-Bobo M, Raehm L, Richeter S, Durand J-O, Cunin F (2016) Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer. J Mater Chem B 4(21):3639–3642. https://doi.org/10.1039/C6TB00690F

    Article  CAS  PubMed  Google Scholar 

  100. Knežević NŽ, Stojanovic V, Chaix A, Bouffard E, Cheikh KE, Morère A, Maynadier M, Lemercier G, Garcia M, Gary-Bobo M, Durand J-O, Cunin F (2016) Ruthenium(ii) complex-photosensitized multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy. J Mater Chem B 4(7):1337–1342. https://doi.org/10.1039/C5TB02726H

    Article  CAS  PubMed  Google Scholar 

  101. Cheng S-H, Hsieh C-C, Chen N-T, Chu C-H, Huang C-M, Chou P-T, Tseng F-G, Yang C-S, Mou C-Y, Lo L-W (2011) Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy. Nano Today 6(6):552–563. https://doi.org/10.1016/j.nantod.2011.10.003

    Article  CAS  Google Scholar 

  102. Chaix A, Rajoua K, Stojanovic V, El Cheikh K, Bouffard E, Brocéro A, Garcia M, Maynadier M, Morère A, Gary-Bobo M, Favier F, Durand J-O, Cunin F (2018) Two-photon fluorescence imaging and therapy of cancer cells with anisotropic gold-nanoparticle-supported porous silicon nanostructures. ChemNanoMat 4(4):343–347. https://doi.org/10.1002/cnma.201700368

    Article  CAS  Google Scholar 

  103. Zhang P, Wang J, Huang H, Yu B, Qiu K, Huang J, Wang S, Jiang L, Gasser G, Ji L, Chao H (2015) Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(II) complexes: a way towards cancer therapy? Biomaterials 63:102–114. https://doi.org/10.1016/j.biomaterials.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  104. Girardot C, Lemercier G, Mulatier JC, Chauvin J, Baldeck PL, Andraud C (2007) Novel ruthenium(ii) and zinc(ii) complexes for two-photon absorption related applications. Dalton Trans 31:3421–3426. https://doi.org/10.1039/B706715A

    Article  Google Scholar 

  105. Boca SC, Four M, Bonne A, van der Sanden B, Astilean S, Baldeck PL, Lemercier G (2009) An ethylene-glycol decorated ruthenium(ii) complex for two-photon photodynamic therapy. ChemComm 30:4590–4592. https://doi.org/10.1039/B907143A

    Article  Google Scholar 

  106. Girardot C, Cao B, Mulatier J-C, Baldeck PL, Chauvin J, Riehl D, Delaire JA, Andraud C, Lemercier G (2008) Ruthenium(II) complexes for two-photon absorption-based optical power limiting. ChemPhysChem 9(11):1531–1535. https://doi.org/10.1002/cphc.200800186

    Article  CAS  PubMed  Google Scholar 

  107. Four M, Riehl D, Mongin O, Blanchard-Desce M, Lawson-Daku LM, Moreau J, Chauvin J, Delaire JA, Lemercier G (2011) A novel ruthenium(ii) complex for two-photon absorption-based optical power limiting in the near-IR range. Phys Chem Chem Phys 13(38):17304–17312. https://doi.org/10.1039/C1CP21661A

    Article  CAS  PubMed  Google Scholar 

  108. Huang H, Yu B, Zhang P, Huang J, Chen Y, Gasser G, Ji L, Chao H (2015) Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew Chem Int Ed 54(47):14049–14052. https://doi.org/10.1002/anie.201507800

    Article  CAS  Google Scholar 

  109. Karges J, Kuang S, Maschietto F, Blacque O, Ciofini I, Chao H, Gasser G (2020) Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nat Commun 11(1):3262. https://doi.org/10.1038/s41467-020-16993-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Karges J, Kuang S, Ong YC, Chao H, Gasser G (2020) 1- and 2-photon phototherapeutic effects of Ru(II) polypyridine complexes in the hypoxic centre of large multicellular tumour spheroids and tumour-bearing mice. Chem Eur J. https://doi.org/10.1002/chem.202003486

    Article  PubMed  Google Scholar 

  111. Qiu K, Wen Y, Ouyang C, Liao X, Liu C, Rees TW, Zhang Q, Ji L, Chao H (2019) The stepwise photodamage of organelles by two-photon luminescent ruthenium(ii) photosensitizers. ChemComm 55(75):11235–11238. https://doi.org/10.1039/C9CC05962H

    Article  CAS  Google Scholar 

  112. Zeng L, Kuang S, Li G, Jin C, Ji L, Chao H (2017) A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy. ChemComm 53(12):1977–1980. https://doi.org/10.1039/C6CC10330H

    Article  CAS  Google Scholar 

  113. Liu J, Chen Y, Li G, Zhang P, Jin C, Zeng L, Ji L, Chao H (2015) Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials 56:140–153. https://doi.org/10.1016/j.biomaterials.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  114. Liu J, Liao X, Xiong K, Kuang S, Jin C, Ji L, Chao H (2020) Boosting two-photon photodynamic therapy with mitochondria-targeting ruthenium–glucose conjugates. ChemComm 56(43):5839–5842. https://doi.org/10.1039/D0CC01148G

    Article  CAS  Google Scholar 

  115. Qiu K, Wang J, Song C, Wang L, Zhu H, Huang H, Huang J, Wang H, Ji L, Chao H (2017) Crossfire for two-photon photodynamic therapy with fluorinated ruthenium (II) photosensitizers. ACS Appl Mater Inter 9(22):18482–18492. https://doi.org/10.1021/acsami.7b02977

    Article  CAS  Google Scholar 

  116. Hess J, Huang H, Kaiser A, Pierroz V, Blacque O, Chao H, Gasser G (2017) Evaluation of the medicinal potential of two ruthenium(II) polypyridine complexes as one- and two-photon photodynamic therapy photosensitizers. Chem Eur J 23(41):9888–9896. https://doi.org/10.1002/chem.201701392

    Article  CAS  PubMed  Google Scholar 

  117. Raza A, Archer SA, Fairbanks SD, Smitten KL, Botchway SW, Thomas JA, MacNeil S, Haycock JW (2020) A dinuclear ruthenium(II) complex excited by near-infrared light through two-photon absorption induces phototoxicity deep within hypoxic regions of melanoma cancer spheroids. J Am Chem Soc 142(10):4639–4647. https://doi.org/10.1021/jacs.9b11313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li J, Zeng L, Xiong K, Rees TW, Jin C, Wu W, Chen Y, Ji L, Chao H (2019) A biotinylated ruthenium(ii) photosensitizer for tumor-targeted two-photon photodynamic therapy. ChemComm 55(73):10972–10975. https://doi.org/10.1039/C9CC05826E

    Article  CAS  Google Scholar 

  119. Zhou Z, Liu J, Rees TW, Wang H, Li X, Chao H, Stang PJ (2018) Heterometallic Ru–Pt metallacycle for two-photon photodynamic therapy. Proc Natl Acad Sci 115(22):5664–5669. https://doi.org/10.1073/pnas.1802012115

    Article  CAS  PubMed  Google Scholar 

  120. Zhou Z, Liu J, Huang J, Rees TW, Wang Y, Wang H, Li X, Chao H, Stang PJ (2019) A self-assembled Ru–Pt metallacage as a lysosome-targeting photosensitizer for 2-photon photodynamic therapy. Proc Natl Acad Sci 116(41):20296–20302. https://doi.org/10.1073/pnas.1912549116

    Article  CAS  PubMed  Google Scholar 

  121. McKenzie LK, Sazanovich IV, Baggaley E, Bonneau M, Guerchais V, Williams JAG, Weinstein JA, Bryant HE (2017) Metal complexes for two-photon photodynamic therapy: a cyclometallated iridium complex induces two-photon photosensitization of cancer cells under near-IR light. Chem Eur J 23(2):234–238. https://doi.org/10.1002/chem.201604792

    Article  CAS  PubMed  Google Scholar 

  122. Boreham EM, Jones L, Swinburne AN, Blanchard-Desce M, Hugues V, Terryn C, Miomandre F, Lemercier G, Natrajan LS (2015) A cyclometallated fluorenyl Ir(iii) complex as a potential sensitiser for two-photon excited photodynamic therapy (2PE-PDT). Dalton Trans 44(36):16127–16135. https://doi.org/10.1039/C5DT01855B

    Article  CAS  PubMed  Google Scholar 

  123. Liu J, Jin C, Yuan B, Chen Y, Liu X, Ji L, Chao H (2017) Enhanced cancer therapy by the marriage of metabolic alteration and mitochondrial-targeted photodynamic therapy using cyclometalated Ir(iii) complexes. ChemComm 53(71):9878–9881. https://doi.org/10.1039/C7CC05518H

    Article  CAS  Google Scholar 

  124. Tian X, Zhu Y, Zhang M, Luo L, Wu J, Zhou H, Guan L, Battaglia G, Tian Y (2017) Localization matters: a nuclear targeting two-photon absorption iridium complex in photodynamic therapy. ChemComm 53(23):3303–3306. https://doi.org/10.1039/C6CC09470H

    Article  CAS  Google Scholar 

  125. Liu J, Jin C, Yuan B, Liu X, Chen Y, Ji L, Chao H (2017) Selectively lighting up two-photon photodynamic activity in mitochondria with AIE-active iridium(iii) complexes. ChemComm 53(12):2052–2055. https://doi.org/10.1039/C6CC10015E

    Article  CAS  Google Scholar 

  126. Qiu K, Ouyang M, Liu Y, Huang H, Liu C, Chen Y, Ji L, Chao H (2017) Two-photon photodynamic ablation of tumor cells by mitochondria-targeted iridium(iii) complexes in aggregate states. J Mater Chem B 5(27):5488–5498. https://doi.org/10.1039/C7TB00731K

    Article  CAS  PubMed  Google Scholar 

  127. Cho S, You Y, Nam W (2014) Lysosome-specific one-photon fluorescence staining and two-photon singlet oxygen generation by molecular dyad. RSC Adv 4(33):16913–16916. https://doi.org/10.1039/C4RA02354D

    Article  CAS  Google Scholar 

  128. Kuang S, Sun L, Zhang X, Liao X, Rees TW, Zeng L, Chen Y, Zhang X, Ji L, Chao H (2020) A mitochondrion-localized two-photon photosensitizer generating carbon radicals against hypoxic tumors. Angew Chem Int Ed. https://doi.org/10.1002/anie.202009888

    Article  Google Scholar 

  129. Knoll JD, Turro C (2015) Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord Chem Rev 282–283:110–126. https://doi.org/10.1016/j.ccr.2014.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Knoll JD, Albani BA, Turro C (2015) New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation. Acc Chem Res 48(8):2280–2287. https://doi.org/10.1021/acs.accounts.5b00227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mari C, Pierroz V, Ferrari S, Gasser G (2015) Combination of Ru(ii) complexes and light: new frontiers in cancer therapy. Chem Sci 6(5):2660–2686. https://doi.org/10.1039/C4SC03759F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jakubaszek M, Goud B, Ferrari S, Gasser G (2018) Mechanisms of action of Ru(ii) polypyridyl complexes in living cells upon light irradiation. ChemComm 54(93):13040–13059. https://doi.org/10.1039/C8CC05928D

    Article  CAS  Google Scholar 

  133. Xie L, Guan R, Rees TW, Chao H (2020) Organelle-targeting metal anticancer agents. In: Sadler PJ, van Eldik R (eds) Adv. Inorg. Chem., vol 75. Academic Press, pp 287–337. doi:https://doi.org/10.1016/bs.adioch.2019.10.004

  134. Qiu K, Chen Y, Rees TW, Ji L, Chao H (2019) Organelle-targeting metal complexes: From molecular design to bio-applications. Coord Chem Rev 378:66–86. https://doi.org/10.1016/j.ccr.2017.10.022

    Article  CAS  Google Scholar 

  135. McKenzie LK, Bryant HE, Weinstein JA (2019) Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord Chem Rev 379:2–29. https://doi.org/10.1016/j.ccr.2018.03.020

    Article  CAS  Google Scholar 

  136. Karges J, Yempala T, Tharaud M, Gibson D, Gasser G (2020) A multi-action and multi-target RuII–PtIV conjugate combining cancer-activated chemotherapy and photodynamic therapy to overcome drug resistant cancers. Angew Chem Int Ed 59(18):7069–7075. https://doi.org/10.1002/anie.201916400

    Article  CAS  Google Scholar 

  137. Huang H, Banerjee S, Sadler PJ (2018) Recent advances in the design of targeted iridium(III) photosensitizers for photodynamic therapy. ChemBioChem 19(15):1574–1589. https://doi.org/10.1002/cbic.201800182

    Article  CAS  PubMed  Google Scholar 

  138. Zamora A, Vigueras G, Rodríguez V, Santana MD, Ruiz J (2018) Cyclometalated iridium(III) luminescent complexes in therapy and phototherapy. Coord Chem Rev 360:34–76. https://doi.org/10.1016/j.ccr.2018.01.010

    Article  CAS  Google Scholar 

  139. Sharma SA, Sudhindra P, Roy N, Paira P (2020) Advances in novel iridium (III) based complexes for anticancer applications: a review. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2020.119925

    Article  Google Scholar 

  140. Huang T, Yu Q, Liu S, Huang W, Zhao Q (2018) Phosphorescent iridium(iii) complexes: a versatile tool for biosensing and photodynamic therapy. Dalton Trans 47(23):7628–7633. https://doi.org/10.1039/C8DT00887F

    Article  CAS  PubMed  Google Scholar 

  141. Thackaberry EA (2012) Non-clinical toxicological considerations for pharmaceutical salt selection. Expert Opin Drug Metab Toxicol 8(11):1419–1433. https://doi.org/10.1517/17425255.2012.717614

    Article  CAS  PubMed  Google Scholar 

  142. Zhu B-Z, Chao X-J, Huang C-H, Li Y (2016) Delivering the cell-impermeable DNA ‘light-switching’ Ru(ii) complexes preferentially into live-cell nucleus via an unprecedented ion-pairing method. Chem Sci 7(7):4016–4023. https://doi.org/10.1039/C5SC03796D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean: Soil, Air, Water 35(1):42–48. https://doi.org/10.1002/clen.200600015

    Article  CAS  Google Scholar 

  144. Biczak R, Pawlowska B, Podsiadlo C, Telesinski A (2019) Toxicity of ammonium hexafluorophosphate to selected terrestrial plants. Fresenius Environ Bull 28(10):7101–7107

  145. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401(3):273–294. https://doi.org/10.1002/andp.19314010303

    Article  Google Scholar 

  146. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48(18):3244–3266. https://doi.org/10.1002/anie.200805257

    Article  CAS  Google Scholar 

  147. Mikhaylov A, Kondratuk DV, Cnossen A, Anderson HL, Drobizhev M, Rebane A (2016) Cooperative enhancement of two-photon absorption in self-assembled zinc-porphyrin nanostructures. J Phys Chem C 120(21):11663–11670. https://doi.org/10.1021/acs.jpcc.6b01394

    Article  CAS  Google Scholar 

  148. Drobizhev M, Karotki A, Rebane A, Spangler CW (2001) Dendrimer molecules with record large two-photon absorption cross section. Opt Lett 26(14):1081–1083

    Article  CAS  Google Scholar 

  149. Karges J, Blacque O, Chao H, Gasser G (2019) Polymeric Bis(dipyrrinato) Zinc(II) nanoparticles as selective imaging probes for lysosomes of cancer cells. Inorg Chem 58(18):12422–12432. https://doi.org/10.1021/acs.inorgchem.9b02019

    Article  CAS  PubMed  Google Scholar 

  150. Karges J, Basu U, Blacque O, Chao H, Gasser G (2019) Polymeric encapsulation of novel homoleptic Bis(dipyrrinato) Zinc(II) complexes with long lifetimes for applications as photodynamic therapy photosensitisers. Angew Chem Int Ed 58(40):14334–14340. https://doi.org/10.1002/anie.201907856

    Article  CAS  Google Scholar 

  151. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T (2009) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Laser Med Sci 24(2):259–268. https://doi.org/10.1007/s10103-008-0539-1

    Article  CAS  Google Scholar 

  152. Keller S, Ong YC, Lin Y, Cariou K, Gasser G (2020) A tutorial for the assessment of the stability of organometallic complexes in biological media. J Organomet Chem 906:121059. https://doi.org/10.1016/j.jorganchem.2019.121059

    Article  CAS  Google Scholar 

  153. Karges J, Blacque O, Goldner P, Chao H, Gasser G (2019) Towards long wavelength absorbing photodynamic therapy photosensitizers via the extension of a [Ru(bipy)3]2+ Core. Eur J Inorg Chem 32:3704–3712. https://doi.org/10.1002/ejic.201900569

    Article  CAS  Google Scholar 

  154. Karges J, Heinemann F, Jakubaszek M, Maschietto F, Subecz C, Dotou M, Vinck R, Blacque O, Tharaud M, Goud B, Viñuelas Zahı́nos E, Spingler B, Ciofini I, Gasser G (2020) Rationally designed long-wavelength absorbing Ru(II) polypyridyl complexes as photosensitizers for photodynamic Therapy. J Am Chem Soc 142(14):6578–6587. https://doi.org/10.1021/jacs.9b13620

    Article  CAS  PubMed  Google Scholar 

  155. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA, Jain RK (2001) Role of tumor–host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proc Natl Acad Sci 98(8):4628–4633. https://doi.org/10.1073/pnas.081626898

    Article  CAS  PubMed  Google Scholar 

  156. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60(9):2497–2503

    CAS  PubMed  Google Scholar 

  157. Dyson PJ (2019) The rise of 3D cellular spheroids: efficient culture via upward growth from a superamphiphobic surface. National Sci Rev 6(6):1068–1069. https://doi.org/10.1093/nsr/nwz158

    Article  Google Scholar 

  158. Lee JM, Park DY, Yang L, Kim E-J, Ahrberg CD, Lee K-B, Chung BG (2018) Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 8(1):17145. https://doi.org/10.1038/s41598-018-35216-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhao Z, Zhang X, Li C-e, Chen T (2019) Designing luminescent ruthenium prodrug for precise cancer therapy and rapid clinical diagnosis. Biomaterials 192:579–589. https://doi.org/10.1016/j.biomaterials.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  160. Barragán F, López-Senín P, Salassa L, Betanzos-Lara S, Habtemariam A, Moreno V, Sadler PJ, Marchán V (2011) Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(II) complex. J Am Chem Soc 133(35):14098–14108. https://doi.org/10.1021/ja205235m

    Article  CAS  PubMed  Google Scholar 

  161. Jakubaszek M, Rossier J, Karges J, Delasoie J, Goud B, Gasser G, Zobi F (2019) Evaluation of the potential of cobalamin derivatives bearing Ru(II) polypyridyl complexes as photosensitizers for photodynamic therapy. Helv Chim Acta 102(7):e1900104. https://doi.org/10.1002/hlca.201900104

    Article  CAS  Google Scholar 

  162. Huang Y, Huang W, Chan L, Zhou B, Chen T (2016) A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials 103:183–196. https://doi.org/10.1016/j.biomaterials.2016.06.053

    Article  CAS  PubMed  Google Scholar 

  163. Zhu X, Zhou H, Liu Y, Wen Y, Wei C, Yu Q, Liu J (2018) Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater 82:143–157. https://doi.org/10.1016/j.actbio.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  164. Chakrabortty S, Agrawalla BK, Stumper A, Vegi NM, Fischer S, Reichardt C, Kögler M, Dietzek B, Feuring-Buske M, Buske C, Rau S, Weil T (2017) Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. J Am Chem Soc 139(6):2512–2519. https://doi.org/10.1021/jacs.6b13399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Arora K, Herroon M, Al-Afyouni MH, Toupin NP, Rohrabaugh TN, Loftus LM, Podgorski I, Turro C, Kodanko JJ (2018) Catch and release photosensitizers: combining dual-action ruthenium complexes with protease inactivation for targeting invasive cancers. J Am Chem Soc 140(43):14367–14380. https://doi.org/10.1021/jacs.8b08853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Karges J, Jakubaszek M, Mari C, Zarschler K, Goud B, Stephan H, Gasser G (2020) Synthesis and characterization of an epidermal growth factor receptor-selective ruii polypyridyl-nanobody conjugate as a photosensitizer for photodynamic therapy. ChemBioChem 21(4):531–542. https://doi.org/10.1002/cbic.201900419

    Article  CAS  PubMed  Google Scholar 

  167. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1):271–284. https://doi.org/10.1016/S0168-3659(99)00248-5

    Article  CAS  PubMed  Google Scholar 

  168. Villemin E, Ong YC, Thomas CM, Gasser G (2019) Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nat Rev Chem 3(4):261–282. https://doi.org/10.1038/s41570-019-0088-0

    Article  CAS  Google Scholar 

  169. Soliman N, Gasser G, Thomas CM (2020) Incorporation of Ru(II) polypyridyl complexes into nanomaterials for cancer therapy and diagnosis. Adv Mat:accepted. https://doi.org/10.1002/adma202003294

    Article  Google Scholar 

  170. Danhier F (2016) To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–121. https://doi.org/10.1016/j.jconrel.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  171. Sun D, Liu Y, Yu Q, Zhou Y, Zhang R, Chen X, Hong A, Liu J (2013) The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling. Biomaterials 34(1):171–180. https://doi.org/10.1016/j.biomaterials.2012.09.031

    Article  CAS  PubMed  Google Scholar 

  172. Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T (2015) Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine 11(4):947–958. https://doi.org/10.1016/j.nano.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  173. Wumaier M, Yao T-M, Hu X-C, Hu Z-A, Shi S (2019) Luminescent Ru(ii)-thiol modified silver nanoparticles for lysosome targeted theranostics. Dalton Trans 48(28):10393–10397. https://doi.org/10.1039/C9DT00878K

    Article  CAS  PubMed  Google Scholar 

  174. Zhang P, Wang J, Huang H, Chen H, Guan R, Chen Y, Ji L, Chao H (2014) RuNH2@AuNPs as two-photon luminescent probes for thiols in living cells and tissues. Biomaterials 35(32):9003–9011. https://doi.org/10.1016/j.biomaterials.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  175. Elmes RBP, Orange KN, Cloonan SM, Williams DC, Gunnlaugsson T (2011) Luminescent ruthenium(II) polypyridyl functionalized gold nanoparticles; Their DNA binding abilities and application as cellular imaging agents. J Am Chem Soc 133(40):15862–15865. https://doi.org/10.1021/ja2061159

    Article  CAS  PubMed  Google Scholar 

  176. Rogers NJ, Claire S, Harris RM, Farabi S, Zikeli G, Styles IB, Hodges NJ, Pikramenou Z (2014) High coating of Ru(ii) complexes on gold nanoparticles for single particle luminescence imaging in cells. Chem Commun 50(5):617–619. https://doi.org/10.1039/C3CC47606E

    Article  CAS  Google Scholar 

  177. Frasconi M, Liu Z, Lei J, Wu Y, Strekalova E, Malin D, Ambrogio MW, Chen X, Botros YY, Cryns VL, Sauvage J-P, Stoddart JF (2013) Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J Am Chem Soc 135(31):11603–11613. https://doi.org/10.1021/ja405058y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. He L, Huang Y, Zhu H, Pang G, Zheng W, Wong Y-S, Chen T (2014) Cancer-targeted monodisperse mesoporous silica nanoparticles as carrier of ruthenium polypyridyl complexes to enhance theranostic effects. Adv Funct Mater 24(19):2754–2763. https://doi.org/10.1002/adfm.201303533

    Article  CAS  Google Scholar 

  179. Ellahioui Y, Patra M, Mari C, Kaabi R, Karges J, Gasser G, Gómez-Ruiz S (2019) Mesoporous silica nanoparticles functionalised with a photoactive ruthenium(ii) complex: exploring the formulation of a metal-based photodynamic therapy photosensitiser. Dalton Trans 48(18):5940–5951. https://doi.org/10.1039/C8DT02392A

    Article  CAS  PubMed  Google Scholar 

  180. Sun W, Li S, Häupler B, Liu J, Jin S, Steffen W, Schubert US, Butt H-J, Liang X-J, Wu S (2017) An amphiphilic ruthenium polymetallodrug for combined photodynamic therapy and photochemotherapy in vivo. Adv Mater 29(6):1603702. https://doi.org/10.1002/adma.201603702

    Article  CAS  Google Scholar 

  181. Dickerson M, Howerton B, Bae Y, Glazer CE (2016) Light-sensitive ruthenium complex-loaded cross-linked polymeric nanoassemblies for the treatment of cancer. J Mater Chem B 4(3):394–408. https://doi.org/10.1039/C5TB01613D

    Article  CAS  PubMed  Google Scholar 

  182. Karges J, Chao H, Gasser G (2020) Synthesis, characterization, and biological evaluation of the polymeric encapsulation of a ruthenium(II) polypyridine complex with pluronic F-127/poloxamer-407 for photodynamic therapy applications. Eur J Inorg Chem 34:3242–3248. https://doi.org/10.1002/ejic.202000545

    Article  CAS  Google Scholar 

  183. Chan L, Huang Y, Chen T (2016) Cancer-targeted tri-block copolymer nanoparticles as payloads of metal complexes to achieve enhanced cancer theranosis. J Mater Chem B 4(26):4517–4525. https://doi.org/10.1039/C6TB00514D

    Article  CAS  PubMed  Google Scholar 

  184. Karges J, Li J, Zeng L, Chao H, Gasser G (2020) Polymeric encapsulation of a ruthenium polypyridine complex for tumor targeted 1- and 2-photon photodynamic therapy. ChemRxiv. https://doi.org/10.26434/chemrxiv.12436457.v1

    Article  Google Scholar 

  185. Jones HJ, Vernon DI, Brown SB (2003) Photodynamic therapy effect of m-THPC (Foscan®) in vivo: correlation with pharmacokinetics. Br J Cancer 89(2):398–404. https://doi.org/10.1038/sj.bjc.6601101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by an ERC Consolidator Grant PhotoMedMet to G. G. (GA 681679) and has received support under the program “Investissements d’Avenir” launched by the French Government and implemented by the ANR with the reference ANR-10-IDEX-0001-02 PSL (G. G.), the National Science Foundation of China (Nos. 21525105 and 21778079 for H. C.) and the 973 Program (No. 2015CB856301 for H. C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Karges, Hui Chao or Gilles Gasser.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karges, J., Chao, H. & Gasser, G. Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy. J Biol Inorg Chem 25, 1035–1050 (2020). https://doi.org/10.1007/s00775-020-01829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01829-5

Keywords

Navigation