Skip to main content
Log in

Evolutionary insights into the active-site structures of the metallo-β-lactamase superfamily from a classification study with support vector machine

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The metallo-β-lactamase (MβL) superfamily, which is intriguing due to its enzyme promiscuity, is a good model enzyme superfamily for studies of catalytic function evolution. Our previous study traced the evolution of the phosphotriesterase activity of the MβL superfamily and found that MβLs go through three typical active-site structures in the development of phosphotriesterase activity. In the present study, taking the three typical active-site structures as class labels, the classification and prediction models, which were established by support vector machine and amino acid composition, classified the MβL members into three classes. The indispensable amino acid compositions showed a surprising performance that was remarkably better than the performance of the dispensable amino acid compositions and even equal to the performance of the 20 native amino acids. We further traced the origin of the classification error and found that there was one subclass adopting a type of active-site structure that was the evolutionary transition between these classes. After that, our classification and prediction models were successfully used to predict several MβL active-site structures that lost the dinuclear structures during crystallization. In summary, our studies established a classification and prediction system for active-site structures that well compensated for experimental methods that recognize protein structure details and suggest that the indispensable amino acids contain much more protein structure information than the dispensable amino acids.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Some or all data and models used during the study are available from the corresponding author by request.

Code availability

All the code used during the study is available from the corresponding author by request.

References

  1. López-Canut V, Roca M, Bertrán J, Moliner V, Tuñón I (2011) Promiscuity in Alkaline phosphatase superfamily. Unraveling evolution through molecular simulations. J Am Chem Soc 133(31):12050–12062

    PubMed  Google Scholar 

  2. Bora RP, Mills MJ, Frushicheva MP, Warshel A (2015) On the challenge of exploring the evolutionary trajectory from phosphotriesterase to aryl esterase using computer simulations. J Phys Chem B 119(8):3434–3445

    CAS  PubMed  Google Scholar 

  3. Elias M, Tawfik DS (2012) Divergence and convergence in enzyme evolution: parallel evolution of Paraoxonases from quorum-quenching Lactonases. J Biol Chem 287(1):11–20

    CAS  PubMed  Google Scholar 

  4. Zhang H, Yang L, Ding W, Ma Y (2018) Theoretical studies on the catalytic cycle of histidine acid phosphatases revealing an acid proof mechanism. J Phys Chem B 122(30):7530–7538

    CAS  PubMed  Google Scholar 

  5. Zhang H, Yang L, Yan L-F, Liao R-Z, Tian W-Q (2018) Evolution of phosphotriesterase activities of the metallo-β-lactamase family: a theoretical study. J Inorg Biochem 184:8–14

    CAS  PubMed  Google Scholar 

  6. Zhang H, Yang L, Ding W, Ma Y (2018) The pH-dependent activation mechanism of Ser102 in Escherichia coli alkaline phosphatase: a theoretical study. J Biol Inorg Chem 23(2):277–284

    CAS  PubMed  Google Scholar 

  7. Zhang H, Yang L, Ma Y-Y, Zhu C, Lin S, Liao R-Z (2018) Theoretical studies on catalysis mechanisms of Serum Paraoxonase 1 and Phosphotriesterase Diisopropyl Fluorophosphatase suggest the alteration of substrate preference from Paraoxonase to DFP. Molecules 23(7):1660

    PubMed Central  Google Scholar 

  8. Callebaut I, Moshous D, Mornon JP, de Villartay JP (2002) Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family. Nucleic Acids Res 30(16):3592–3601

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Aravind L (1999) An evolutionary classification of the metallo-ß-lactamase fold proteins. Silico Biol 1(2):69–91

    CAS  Google Scholar 

  10. Daiyasu H, Osaka K, Ishino Y, Toh H (2001) Expansion of the zinc metallo-hydrolase family of the β-lactamase fold. FEBS Lett 503(1):1–6

    CAS  PubMed  Google Scholar 

  11. Dong Y-J, Bartlam M, Sun L, Zhou Y-F, Zhang Z-P, Zhang C-G, Rao Z, Zhang X-E (2005) Crystal Structure of Methyl Parathion Hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353(3):655–663

    CAS  PubMed  Google Scholar 

  12. Condon C, Gilet L (2011) The Metallo-β-Lactamase Family of Ribonucleases. In: Nicholson AW (ed) Ribonucleases. Nucleic Acids and molecular biology. Springer, Berlin, pp 245–267

    Google Scholar 

  13. Baier F, Tokuriki N (2014) Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily. J Mol Biol 426(13):2442–2456

    CAS  PubMed  Google Scholar 

  14. O'Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6(4):R91–R105

    CAS  PubMed  Google Scholar 

  15. Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45(46):13677–13686

    CAS  PubMed  Google Scholar 

  16. Umayal M, Mugesh G (2011) Metallo-β-lactamase and phosphotriesterase activities of some zinc(II) complexes. Inorg Chim Acta 372(1):353–361

    CAS  Google Scholar 

  17. Carfi A, Pares S, Duee E, Galleni M, Duez C, Frère J-M, Dideberg O (1995) The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J 14(20):4914

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure 4(7):823–836

    CAS  PubMed  Google Scholar 

  19. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J (1998) The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution1. J Mol Biol 284(1):125–136

    CAS  PubMed  Google Scholar 

  20. Cai Y-D, Feng K-Y, Lu W-C, Chou K-C (2006) Using LogitBoost classifier to predict protein structural classes. J Theor Biol 238(1):172–176

    CAS  PubMed  Google Scholar 

  21. Shen H-B, Chou K-C (2006) Ensemble classifier for protein fold pattern recognition. Bioinformatics 22(14):1717–1722

    CAS  PubMed  Google Scholar 

  22. Kumar R, Srivastava A, Kumari B, Kumar M (2015) Prediction of β-lactamase and its class by Chou’s pseudo-amino acid composition and support vector machine. J Theor Biol 365:96–103

    CAS  PubMed  Google Scholar 

  23. Srivastava A, Kumar R, Kumar M (2018) BlaPred: Predicting and classifying β-lactamase using a 3-tier prediction system via Chou’s general PseAAC. J Theor Biol 457:29–36

    CAS  PubMed  Google Scholar 

  24. Mercuri PS, Bouillenne F, Boschi L, Lamotte-Brasseur J, Amicosante G, Devreese B, van Beeumen J, Frère J-M, Rossolini GM, Galleni M (2001) Biochemical characterization of the FEZ-1 metallo-β-lactamase of legionella Gormanii ATCC 33297T produced in Escherichia coli. Agents Chemother 45(4):1254–1262

    CAS  Google Scholar 

  25. Hall BG, Salipante SJ, Barlow M (2004) Independent origins of subgroup Bl+B2 and subgroup B3 metallo-β-lactamases. J Mol Evol 59(1):133–141

    CAS  PubMed  Google Scholar 

  26. Pedroso MM, Waite DW, Melse O, Wilson L, Schenk G (2020) Broad spectrum antibiotic-degrading metallo-β-lactamases are phylogenetically diverse. Protein Cell 11(8):613–617

    CAS  PubMed  PubMed Central  Google Scholar 

  27. He Y, Lei J, Pan X, Huang X, Zhao Y (2020) The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis. Sci Rep 10(1):10205

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Selleck C, Pedroso MM, Wilson L, Krco S, Knaven EG, Miraula M, Mitić N, Larrabee JA, Brück T, Clark A, Guddat LW, Schenk G (2020) Structure and mechanism of potent bifunctional β-lactam- and homoserine lactone-degrading enzymes from marine microorganisms. Sci Rep 10(1):12882

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tian X, Chen D, Gao J (2018) An overview on protein fold classification via machine learning approach. Curr Proteomics 15(2):85–98

    CAS  Google Scholar 

  30. Sudha P, Ramyachitra D, Manikandan P (2018) Enhanced artificial neural network for protein fold recognition and structural class prediction. Gene Reports 12:261–275

    Google Scholar 

  31. Muthu Krishnan S (2018) Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains. J Theor Biol 445:62–74

    CAS  PubMed  Google Scholar 

  32. Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. J Hydrol 330(3):621–640

    Google Scholar 

  33. Xu C, Dai F, Xu X, Lee YH (2012) GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145–146:70–80

    Google Scholar 

  34. Wang L, Li X, Bai Y (2018) Short-term wind speed prediction using an extreme learning machine model with error correction. Energy Convers Manage 162:239–250

    Google Scholar 

  35. Bock JR, Gough DA (2001) Predicting protein–protein interactions from primary structure. Bioinformatics 17(5):455–460

    CAS  PubMed  Google Scholar 

  36. Guo J, Chen H, Sun Z, Lin Y (2004) A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins 54(4):738–743

    CAS  PubMed  Google Scholar 

  37. Cai Y-d, Lin SL (2003) Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence. BBA-Proteins Proteomics 1648(1):127–133

    CAS  PubMed  Google Scholar 

  38. Zhou X, Tuck DP (2007) MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 23(9):1106–1114

    CAS  PubMed  Google Scholar 

  39. Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18(4):571–584

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Young VR (1523S) Adult amino acid requirements: the case for a major revision in current recommendations. J Nutr 124:1517S–1523S

    CAS  PubMed  Google Scholar 

  41. Reeds PJ (1840S) Dispensable and indispensable amino acids for humans. J Nutr 130(7):1835S–1840S

    CAS  PubMed  Google Scholar 

  42. Fürst P, Stehle P (1565S) What are the essential elements needed for the determination of amino acid requirements in humans? J Nutr 134(6):1558S–1565S

    PubMed  Google Scholar 

  43. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  44. Robasky K, Bulyk ML (2010) UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein–DNA interactions. Nucleic Acids Res 39:D124–D128

    PubMed  PubMed Central  Google Scholar 

  45. Chou K-C, Shen H-B (2007) Recent progress in protein subcellular location prediction. Anal Biochem 370(1):1–16

    CAS  PubMed  Google Scholar 

  46. Liu B, Yang F, Chou K-C (2017) 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Mol Ther-Nucleic Acids 7:267–277

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chou K-C (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11(3):218–234

    CAS  PubMed  Google Scholar 

  48. Nakashima H, Nishikawa K, Ooi T (1986) The folding type of a protein is relevant to the amino acid composition. J Biochem 99(1):153–162

    CAS  PubMed  Google Scholar 

  49. Chou K-C (1995) A novel approach to predicting protein structural classes in a (20–1)-D amino acid composition space. Proteins 21(4):319–344

    CAS  PubMed  Google Scholar 

  50. Chou K-C (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43(3):246–255

    CAS  PubMed  Google Scholar 

  51. Chou K-C (2004) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1):10–19

    PubMed  Google Scholar 

  52. Chou K-C, Cai Y-D (2005) Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model 45(2):407–413

    CAS  PubMed  Google Scholar 

  53. Shen H-B, Chou K-C (2008) PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373(2):386–388

    CAS  PubMed  Google Scholar 

  54. Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  55. Joachims T (1998) Text categorization with Support Vector Machines: learning with many relevant features. In: Nédellec C, Rouveirol C (eds) Machine learning: ECML-98. Lecture notes in computer science, vol 1398. Springer, Berlin, Heidelberg, pp 137–142

    Google Scholar 

  56. Zavaljevski N, Stevens FJ, Reifman J (2002) Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions. Bioinformatics 18(5):689–696

    CAS  PubMed  Google Scholar 

  57. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Google Scholar 

  58. de Carvalho AC, Freitas AA (2009) A tutorial on multi-label classification techniques. In: Foundations of Computational Intelligence Volume 5. Springer, pp 177–195.

  59. Chou K-C (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273(1):236–247

    CAS  PubMed  Google Scholar 

  60. Chou K-C (2001) Using subsite coupling to predict signal peptides. Protein Eng 14(2):75–79

    CAS  PubMed  Google Scholar 

  61. Chou K-C (2001) Prediction of signal peptides using scaled window. Peptides 22(12):1973–1979

    CAS  PubMed  Google Scholar 

  62. Xu Y, Shao X-J, Wu L-Y, Deng N-Y, Chou K-C (2013) iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ 1:e171

    PubMed  PubMed Central  Google Scholar 

  63. Docquier J-D, Benvenuti M, Calderone V, Stoczko M, Menciassi N, Rossolini GM, Mangani S (2010) High-resolution crystal structure of the subclass B3 metallo-β-lactamase BJP-1: rational basis for substrate specificity and interaction with Sulfonamides. Antimicrob Agents Chemother 54(10):4343–4351

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcı́a-Sáez I, Mercuri PS, Papamicael C, Kahn R, Frère JM, Galleni M, Rossolini GM, Dideberg O (2003) Three-dimensional structure of FEZ-1, a monomeric subclass b3 metallo-β-lactamase from Fluoribacter gormanii, in native form and in complex with d-Captopril. J Mol Biol 325(4):651–660

    PubMed  Google Scholar 

  65. Bebrone C (2007) Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 74(12):1686–1701

    CAS  PubMed  Google Scholar 

  66. Bebrone C, Delbrück H, Kupper MB, Schlömer P, Willmann C, Frère J-M, Fischer R, Galleni M, Hoffmann KMV (2009) The structure of the Dizinc subclass B2 metallo-β-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrob Agents Chemother 53(10):4464

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hinchliffe P, González MM, Mojica MF, González JM, Castillo V, Saiz C, Kosmopoulou M, Tooke CL, Llarrull LI, Mahler G, Bonomo RA, Vila AJ, Spencer J (2016) Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci USA 113(26):E3745

    CAS  PubMed  Google Scholar 

  68. Allerston CK, Lee SY, Newman JA, Schofield CJ, Mchugh PJ, Gileadi O (2015) The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Res 43(22):11047–11060

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (Grant no. 21203042), the Fundamental Research Funds for the Central Universities of Northwest Minzu University of China (Grant no. 31920200038), the Scientific Research Program of the Higher Education Institutions of Gansu Province (Grant no. 2020A-016), and the Foundation of Northwest Normal University of China (Grant no. NWNU-LKQN2019-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, L., Feng, Yl. et al. Evolutionary insights into the active-site structures of the metallo-β-lactamase superfamily from a classification study with support vector machine. J Biol Inorg Chem 25, 1023–1034 (2020). https://doi.org/10.1007/s00775-020-01822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01822-y

Keywords

Navigation