Skip to main content
Log in

Non-crystallographic symmetry in proteins: Jahn–Teller-like and Butterfly-like effects?

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Partial symmetry, i.e., the presence of more than one molecule in the asymmetric unit of a crystal, is a relatively rare phenomenon in small-molecule crystallography, but is quite common in protein crystallography, where it is typically known as non-crystallographic symmetry (NCS). Several papers in literature propose molecular determinants such as crystal contacts, thermal factors, or TLS parameters as an explanation for the phenomenon of intrinsic asymmetry among molecules that are in principle equivalent. Nevertheless, are all of the above determinants the cause or are they rather the effect? In the general frame of the NCS often observed in crystals of biomolecules, this paper deals with nickel(II)-substituted human carbonic anhydrase(II) (hCAII) and its SAD structure determination at the nickel edge. The structure revealed two non-equivalent molecules in the asymmetric unit, the presence of a secondary nickel-binding site at the N-terminus of both molecules (which had never been found before in the nickel-substituted enzyme) and two different coordination geometries of the active site nickel (hexa-coordinated in one molecule and mainly penta-coordinated in the other). The above-mentioned standard molecular crystallographic determinants of this asymmetry are analyzed and presented in detail for this particular case. From these considerations, we speculate on the existence of a fundamental, although yet unknown, common cause for the partial symmetry that is so often encountered in X-ray structures of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The simple counting of the water molecules present in the pdb files of both structures does not seem to be a reliable parameter in the evaluation of the dehydration. In fact, the much higher resolution of our structure (1.4 Å vs 1.9 Å) greatly increases the number of water molecule characterized by a clear electron density, making this comparison devoid of significance.

References

  1. Fichtner K (1986) Comput Math Appl-B 12:751–762

    Article  Google Scholar 

  2. Tripp BC, Smith K, Ferry JG (2001) J Biol Chem 276:48615–48618

    Article  CAS  PubMed  Google Scholar 

  3. Lipton AS, Heck RW, Ellis PD (2004) J Am Chem Soc 126:4735–4739

    Article  CAS  PubMed  Google Scholar 

  4. Bertini I, Canti G, Luchinat C, Borghi E (1983) J Inorg Biochem 18:221–229

    Article  CAS  PubMed  Google Scholar 

  5. Khalifah RG (1973) Proc Natl Acad Sci USA 70:1986–1989

    Article  CAS  PubMed  Google Scholar 

  6. Lindskog S (1997) Pharmacol Ther 74:1–20

    Article  CAS  PubMed  Google Scholar 

  7. Sethi KK, Vullo D, Verma SM, Tanc M, Carta F, Supuran CT (2013) Bioorg Med Chem 21:5973–5982

    Article  CAS  PubMed  Google Scholar 

  8. Cerofolini L, Giuntini S, Louka A, Ravera E, Fragai M, Luchinat C (2017) J Phys Chem B 121:8094–8101

    Article  CAS  PubMed  Google Scholar 

  9. Hakansson K, Wehnert A, Liljas A (1994) Acta Crystallogr D Biol Crystallogr 50:93–100

    Article  CAS  PubMed  Google Scholar 

  10. Coleman JE (1967) J Biol Chem 242:5212–5219

    CAS  PubMed  Google Scholar 

  11. Avvaru BS, Arenas DJ, Tu C, Tanner DB, McKenna R, Silverman DN (2010) Arch Biochem Biophys 502:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertini I, Luchinat C (1984) Ann N Y Acad Sci 429:89–98

    Article  CAS  PubMed  Google Scholar 

  13. Bertini I, Luchinat C, Scozzafava A (1982) Struct Bonding 48:45–92

    Article  Google Scholar 

  14. Bertini I, Canti G, Luchinat C, Scozzafava A (1978) J Am Chem Soc 100:4873–4877

    Article  CAS  Google Scholar 

  15. Cerofolini L, Staderini T, Giuntini S, Ravera E, Fragai M, Parigi G, Pierattelli R, Luchinat C (2018) J Biol Inorg Chem 23:71–80

    Article  CAS  PubMed  Google Scholar 

  16. Cox JD, Hunt JA, Compher KM, Fierke CA, Christianson DW (2000) Biochemistry 39:13687–13694

    Article  CAS  PubMed  Google Scholar 

  17. Kabsch W (2010) Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vonrhein C, Blanc E, Roversi P, Bricogne G (2007) Methods Mol Biol 364:215–230

    CAS  PubMed  Google Scholar 

  19. Cowtan K (2006) Acta Cryst D 62:1002–1011

    Article  CAS  Google Scholar 

  20. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Nat Protoc 3:1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murshudov GN, Skubàk P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  CAS  PubMed  Google Scholar 

  23. Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  PubMed  Google Scholar 

  24. Krissinel E, Henrick K (2007) J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  25. Håkansson K, Carlsson M, Svensson LA, Liljas A (1992) J Mol Biol 227:1192–1204

    Article  PubMed  Google Scholar 

  26. Bertarello A, Schubeis T, Fuccio C, Ravera E, Fragai M, Parigi G, Emsley L, Pintacuda G, Luchinat C (2017) Inorg Chem 56:6624–6629

    Article  CAS  PubMed  Google Scholar 

  27. Bertini I, Borghi E, Luchinat C (1978) Bioinorg Chem 9:495–504

    Article  CAS  Google Scholar 

  28. Robbins AH, Domsic JF, Agbandje-McKenna M, McKenna R (2010) Acta Crystallogr D Biol Crystallogr 66:950–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vellieux FMD, Dijkstra BW (1997) J Appl Crystallogr 30:396–399

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experiments were performed on beamline ID23-1 at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to Local Contact at the ESRF for providing assistance in using beamline ID23-1. The authors acknowledge the support and the use of resources of Instruct-ERIC, a Landmark ESFRI project, and specifically the CERM/CIRMMP Italy Centre. This work has been supported by Fondazione Cassa di Risparmio di Firenze, the European Commission (contract #675858). J.P.S. acknowledges FCT for the doctoral fellowship PD/BD/135180/2017 integrated in the Ph.D. Program in NMR applied to chemistry, materials, and biosciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio Luchinat or Vito Calderone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.M., Giuntini, S., Cerofolini, L. et al. Non-crystallographic symmetry in proteins: Jahn–Teller-like and Butterfly-like effects?. J Biol Inorg Chem 24, 91–101 (2019). https://doi.org/10.1007/s00775-018-1630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1630-0

Keywords

Navigation