Skip to main content
Log in

Kinetic characterization of the inhibition of protein tyrosine phosphatase-1B by Vanadyl (VO2+) chelates

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Protein tyrosine phosphatases (PTPases) are a prominent focus of drug design studies because of their roles in homeostasis and disorders of metabolism. These studies have met with little success because (1) virtually all inhibitors hitherto exhibit only competitive behavior and (2) a consensus sequence H/V-C-X5-R-S/T characterizes the active sites of PTPases, leading to low specificity of active site directed inhibitors. With protein tyrosine phosphatase-1B (PTP1B) identifed as the target enzyme of the vanadyl (VO2+) chelate bis(acetylacetonato)oxidovanadium(IV) [VO(acac)2] in 3T3-L1 adipocytes [Ou et al. J Biol Inorg Chem 10: 874–886, 2005], we compared the inhibition of PTP1B by VO(acac)2 with other VO2+-chelates, namely, bis(2-ethyl-maltolato)oxidovanadium(IV) [VO(Et-malto)2] and bis(3-hydroxy-2-methyl-4(1H)pyridinonato)oxidovanadium(IV) [VO(mpp)2] under steady-state conditions, using the soluble portion of the recombinant human enzyme (residues 1–321). Our results differed from those of previous investigations because we compared inhibition in the presence of the nonspecific substrate p-nitrophenylphosphate and the phosphotyrosine-containing undecapeptide DADEpYLIPQQG mimicking residues 988–998 of the epidermal growth factor receptor, a relevant, natural substrate. While VO(Et-malto)2 acts only as a noncompetitive inhibitor in the presence of either subtrate, VO(acac)2 exhibits classical uncompetitive inhibition in the presence of DADEpYLIPQQG but only apparent competitive inhibition with p-nitrophenylphosphate as substrate. Because uncompetitive inhibitors are more potent pharmacologically than competitive inhibitors, structural characterization of the site of uncompetitive binding of VO(acac)2 may provide a new direction for design of inhibitors for therapeutic purposes. Our results suggest also that the true behavior of other inhibitors may have been masked when assayed with only p-nitrophenylphosphate as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Abbreviations

Ac:

Acetate

CM:

Carboxymethyl

DMSO:

Dimethyl sulfoxide

EDTA:

N,N,N′,N′-ethylene diamine-tetraacetic acid

EGFR:

Epidermal growth factor receptor

EGFR988−998 :

The phosphotyrosine containing undecapeptide DADEpYLIPQQG simulating residues 988–998 of phosphorylated EGFR

ENDOR:

Electron nuclear double resonance

EPR:

Electron paramagnetic resonance

IPTG:

Isopropyl-β-D-1-thiogalactopyranoside

IR:

Insulin receptor

IRS-1:

Insulin receptor substrate-1

MES:

2-(N-morpholino)-ethanesulfonic acid

pNPP:

para-nitrophenylphosphate

PTPases:

Protein tyrosine phosphatases

PTP1B:

Protein tyrosine phosphatase-1B

pY:

Phosphotyrosine

UV:

Ultraviolet

VO(acac)2 :

Bis(acetylacetonato)oxidovanadium(IV)

VO(Et-malto)2 :

Bis(2-ethyl-maltolato)oxidovanadium(IV)

VO(Me-malto)2 :

Bis(2-methyl-maltolato)oxidovanadium(IV)

VO(mpp)2 :

Bis(3-hydroxy-2-methyl-4(1H)pyridinonato)oxidovanadium(IV)

TCEP:

Tris(2-carboxyethyl)phosphine

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Tonks NK, Diltz CD, Fischer EH (1988) J Biol Chem 263:6731–67372

    CAS  PubMed  Google Scholar 

  2. Tonks NK, Diltz CD, Fischer EH (1988) J Biol Chem 263:6722–6730

    CAS  PubMed  Google Scholar 

  3. Bakke J, Haj FG (2015) Semin Cell Dev Biol 37:58–65

    Article  CAS  PubMed  Google Scholar 

  4. Sarmiento M, Zhao Y, Gordon SJ, Zhang ZY (1998) J Biol Chem 273:26368–26370

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Zhang ZY (2007) Drug Discov Today 12:373–381

    Article  CAS  PubMed  Google Scholar 

  6. Zhang ZY (1998) Crit Rev Biochem Mol Biol 33:1–52

    Article  PubMed  Google Scholar 

  7. Zhang ZY (2002) Annu Rev Pharmacol Toxicol 42:209–234

    Article  CAS  PubMed  Google Scholar 

  8. He R, Yu ZH, Zhang RY, Wu L, Gunawan AM, Lane BS, Shim JS, Zeng LF, He Y, Chen L, Wells CD, Liu JO, Zhang ZY (2015) ACS Med Chem Lett 6:782–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M, McDowell RS, Hansen SK (2004) Nat Struc Mol Biol 11:730–737

    Article  CAS  Google Scholar 

  10. Makinen MW, Brady MJ (2002) J Biol Chem 277:12215–12220

    Article  CAS  PubMed  Google Scholar 

  11. Ou HS, Yan LM, Mustafi D, Makinen MW, Brady MJ (2005) J Inorg Biol Chem 10:874–886

    Article  CAS  Google Scholar 

  12. Makinen MW, Salehitazangi M (2014) Coord Chem Rev 279:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Science 283:1544–1548

    Article  CAS  PubMed  Google Scholar 

  14. Makinen MW, Rivera SE, Zhou KI, Brady MJ (2007) In: Kustin K, Pessoa JC, Crans DC (eds) Vanadium: the versatile metal, Am Chem Soc, Washington, DC, pp 82–92

    Chapter  Google Scholar 

  15. Milarsk KL, Zhang ZY, Dixon JE, Saltiel AR (1993) J Biol Chem 268:23634–23639

    Google Scholar 

  16. Cornish-Bowden A (1986) FEBS Lett 203:3–6

    Article  CAS  PubMed  Google Scholar 

  17. Westley AM, Westley J (1996) J Biol Chem 271:5347–5352

    Article  CAS  PubMed  Google Scholar 

  18. Thompson KH, Liboiron BD, Bellman YSKDD, Setyawati IA, Patrick BO, Karunaratne V, Rawji G, Wheeler J, Sutton K, Bhanot S, Cassidy C, McNeill JH, Yuen VG, Orvig C (2003) J Biol Inorg Chem 8:66–74

    Article  CAS  PubMed  Google Scholar 

  19. Rangel M, Tamura A, Fukushima C, Sakura H (2001) J Biol Inorg Chem 6:128–132

    Article  CAS  PubMed  Google Scholar 

  20. Harris R (1976) Aust J Chem 29:1329–1334

    Article  CAS  Google Scholar 

  21. Zhang ZY, Thiemesefler AM, Maclean D, McNamara DJ, Dobrusin EM, Sawyer TK, Dixon JE (1993) Substrate-specificity of the protein–tyrosine phosphatases. Proc. Natl. Acad. Sci. (USA) 90:4446–4450

    Article  CAS  Google Scholar 

  22. Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC, Zhang ZY (1997) Proc Natl Acad Sci (USA) 94:13420–13425

    Article  CAS  Google Scholar 

  23. Xie LP, Zhang YL, Zhang ZY (2002) Biochemistry 41:4032–4039

    Article  CAS  PubMed  Google Scholar 

  24. Wang SS, Tabernero L, Zhang M, Harms E, Van Etten RL, Stauffacher CV (2000) Biochemistry 39:1903–1914

    Article  CAS  PubMed  Google Scholar 

  25. Sarmiento M, Puius YA, Vetter SW, Keng YF, Wu L, Zhao Y, Lawrence DS, Almo SC, Zhang ZY (2000) Biochemistry 39:8171–8179

    Article  CAS  PubMed  Google Scholar 

  26. Zhang ZY, Thiemesefler AM, MacLean D, McNamara DJ, Dobrusin EM, Sawyer TK, Dixon JE (1993) Proc Natl Acad Sci (USA) 90:4446–4450

    Article  CAS  Google Scholar 

  27. Dixon M (1953) Biochem J 55:170–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cornish-Bowden A (1974) Biochem J 137:143–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC (2009) Inorg Chem 39:406–416

    Article  Google Scholar 

  30. Crans DC (1998) In: Tracey AS, Crans DC (eds) Vanadium compounds: chemistry, biochemistry, and therapeutic applications. Am Chem Soc, Washington, pp 82–103

    Chapter  Google Scholar 

  31. McLauchlan CC, Peters BJ, Wilsky GR, Crans DC (2015) Coord Chem Rev 301–302:163–199

    Article  Google Scholar 

  32. Chasteen ND, Francavilla J (1976) J Phys Chem 80:867–871

    Article  CAS  Google Scholar 

  33. Albanese NF, Chasteen ND (1978) J Phys Chem 82:910–913

    Article  CAS  Google Scholar 

  34. Chasteen ND (1981) In: Berliner LJ, Reuben J (eds) Biol Magn Reson, vol 3. Plenum Press, NY, pp 53–119

    Chapter  Google Scholar 

  35. Makinen MW, Mustafi D (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 31. Marcel Dekker, NY, pp 89–127

    Google Scholar 

  36. Mustafi D, Makinen MW (2005) Inorg Chem 44:5580–5590

    Article  CAS  PubMed  Google Scholar 

  37. Grybos R, Samotus A, Popova N, Bogolitsyn K (1997) Trans Metal Chem 22:61–64

    Article  CAS  Google Scholar 

  38. Yuen VG, Orvig C, McNeill JH (2003) Can J Physiol Pharmacol 81:1049–1055

    Article  CAS  PubMed  Google Scholar 

  39. Thompson KH, Orvig C (2003) FASEB J 17:A1132

    Google Scholar 

  40. Setyawati IA, Thompson KH, Yuen VG, Sun Y, Battell M, Lyster DM, Vo C, Ruth TJ, Zeisler S, McNeill JH, Orvig C (1998) J Appl Physiol 84:569–575

    CAS  PubMed  Google Scholar 

  41. Mehdi MZ, Srivastava AK (2005) Arch Biochem Biophys 440:158–164

    Article  CAS  PubMed  Google Scholar 

  42. Thompson KH, Barta CA, Orvig C (2006) Chem Soc Rev 35:545–556

    Article  CAS  PubMed  Google Scholar 

  43. Hanson GR, Sun C, Orvig C (1996) Inorg Chem 35:6507–6512

    Article  CAS  PubMed  Google Scholar 

  44. Buglyo P, Kiss E, Fabian I, Kiss T, Sanna D, Garribba E, Micera G (2000) Inorg Chim Acta 306:174–183

    Article  CAS  Google Scholar 

  45. Jukic D, Sabo K, Scitovski R (2007) J Comp Appl Math 201:230–246

    Article  Google Scholar 

  46. Romsicki Y, Kennedy BP, Asante-Appiah E (2003) Arch Biochem Biophys 414:40–50

    Article  CAS  PubMed  Google Scholar 

  47. Rice JA (1988) Mathematical statistics and data analysis. Wadsworth Inc, Belmont, p 595

    Google Scholar 

  48. Schwarz G (1978) Ann Stat 6:461–464

    Article  Google Scholar 

  49. Kuzmic P, Cregar L, Millis SZ, Goldman M (2006) FEBS J 273:3054–3062

    Article  CAS  PubMed  Google Scholar 

  50. Peters KG, Davis MG, Howard BW, Pokross M, Rastogi V, Diven C, Greis KD, Eby-Wilkens E, Maier M, Evdokimov A, Soper S, Genbauffe F (2003) J Inorg Biochem 96:321–330

    Article  CAS  PubMed  Google Scholar 

  51. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) J Biol Chem 272:843–851

    Article  CAS  PubMed  Google Scholar 

  52. Buglyo P, Crans DC, Nagy EM, Lindo RL, Yang LQ, Smee JJ, Jin WZ, Chi LH, Godzala ME, Willsky GR (2005) Inorg Chem 44:5416–5427

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Ding W, Baruah B, Crans DC, Wang R (2008) J Inorg Biochem 102:1846–1853

    Article  CAS  PubMed  Google Scholar 

  54. Mustafi D, Peng B, Foxley S, Makinen MW, Karczmar GS, Zamora M, Ejnik J, Martin H (2009) J Biol Inorg Chem 14:1187–1197

    Article  CAS  PubMed  Google Scholar 

  55. Segal IH (1993) Enzyme kinetics. John Wiley & Sons, Inc., New York, p 957

    Google Scholar 

  56. Dadke S, Chernoff J (2003) Curr Drug Targets Immune Endocr Metabol Disord 3:299–304

    Article  CAS  PubMed  Google Scholar 

  57. Zhang ZY (2005) Biochim Biophys Acta-Proteins Proteom 1754:100–107

    Article  CAS  Google Scholar 

  58. Lee S, Wang Q (2007) Med Res Rev 27:553–573

    Article  CAS  PubMed  Google Scholar 

  59. Yip SC, Saha S, Chernoff J (2010) Trends Biochem Sci 35:442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jia ZC, Barford D, Flint AJ, Tonks NK (1995) Science 268:1754–1758

    Article  CAS  PubMed  Google Scholar 

  61. Choy MS, Li Y, Machado LESF, Kunze MBA, Connors CR, Wei XY, Lidorff-Larsen K, Page R, Peti W (2017) Mol Cell 65:644–658

    Article  CAS  PubMed  Google Scholar 

  62. Tiganis T, Bennett AM (2007) Biochem J 402:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li X, Wilmanns M, Thornton J, Kohn M (2013) Sci Signal 6:rs10

    Article  PubMed  Google Scholar 

  64. Zhang ZY (1995) J Biol Chem 270:11199–11204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Z. Y. Zhang for providing the DNA for overexpression of human PTP1B. IJR was supported by an NIH Roadmap Training Program (T90 DK070076). PBB was supported by a training Grant of the National Institutes of Health at the Interface of Chemistry and Biology (T32GM008720). This research was supported by Grants from the National Institutes of Health (P50 CA125183 and P30 DK020595) and by the Department of Biochemistry and Molecular Biology at The University of Chicago.

Author information

Authors and Affiliations

Authors

Contributions

PBB and SQ synthesized VO(mpp)2 and VO(Et-malto)2, respectively; MAC, JHH, MSH, and IJR overexpressed and purified the enzyme and collected and analyzed preliminary steady-state kinetic data; JHH and MWM conducted the final analysis of kinetic data and wrote the manuscript.

Corresponding author

Correspondence to Marvin W. Makinen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hon, J., Hwang, M.S., Charnetzki, M.A. et al. Kinetic characterization of the inhibition of protein tyrosine phosphatase-1B by Vanadyl (VO2+) chelates. J Biol Inorg Chem 22, 1267–1279 (2017). https://doi.org/10.1007/s00775-017-1500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1500-1

Keywords

Navigation