Skip to main content
Log in

Interaction of Zn(II)bleomycin-A2 and Zn(II)peplomycin with a DNA hairpin containing the 5′-GT-3′ binding site in comparison with the 5′-GC-3′ binding site studied by NMR spectroscopy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bleomycins are a group of glycopeptide antibiotics synthesized by Streptomyces verticillus that are widely used for the treatment of various neoplastic diseases. These antibiotics have the ability to chelate a metal center, mainly Fe(II), and cause site-specific DNA cleavage. Bleomycins are differentiated by their C-terminal regions. Although this antibiotic family is a successful course of treatment for some types of cancers, it is known to cause pulmonary fibrosis. Previous studies have identified that bleomycin-related pulmonary toxicity is linked to the C-terminal region of these drugs. This region has been shown to closely interact with DNA. We examined the binding of Zn(II)peplomycin and Zn(II)bleomycin-A2 to a DNA hairpin of sequence 5′-CCAGTATTTTTACTGG-3′, containing the binding site 5′-GT-3′, and compared the results with those obtained from our studies of the same MBLMs bound to a DNA hairpin containing the binding site 5′-GC-3′. We provide evidence that the DNA base sequence has a strong impact in the final structure of the drug–target complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Adenine

Ala:

β-Aminoalanine

Bit:

Bithiazole

BLMs:

Bleomycins

C:

Cytosine

1D:

One dimensional

2D:

Two dimensional

Δδs:

Differences in chemical shifts

Δω :

Difference in peak width

FID:

Free induction decay

G:

Guanine

Gul:

α-l-Gulose

Hist:

β-Hydoxyhistidine

Mann:

α-d-Mannose

MBLMs:

Metallo-bleomycins

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect cross signals

NOESY:

Nuclear Overhauser effect spectroscopy

OL:

Oligonucleotide

OL1 :

5′-AGCCTTTTGGCCT-3′

OL2 :

5′-CCAGTATTTTTACTGG-3′

PEP:

Peplomycin

ppm:

Parts per million

Pyr:

Pyrimidinyl propionamide

SDS:

Sodium dodecyl sulfate

T:

Thymine

Tails:

C-terminus substituents

Thr:

Threonine

TOCSY:

Totally correlated spectroscopy

Val:

Methylvalerate

References

  1. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) J Antibiot 19:200–209

    CAS  PubMed  Google Scholar 

  2. Bennett JM, Reich SD (1979) Ann Intern Med 90:945–948

    Article  CAS  PubMed  Google Scholar 

  3. Gobbi PG, Federico M (2012) CRC Cr Rev Oncol Hem 82:18–24

    Article  Google Scholar 

  4. Einhorn LH, Donohue J (1977) Ann Intern Med 87:293–298

    Article  CAS  PubMed  Google Scholar 

  5. Carlson RW, Sikic BI, Turbow MM, Ballon SC (1983) J Clin Oncol 1:645–651

    Article  CAS  PubMed  Google Scholar 

  6. Batist G, Andrews JL (1981) JAMA 246:1449–1453

    Article  CAS  PubMed  Google Scholar 

  7. Raisfeld IH, Chovan JP, Frost S (1982) Life Sci 30:1391–1398

    Article  CAS  PubMed  Google Scholar 

  8. Raisfeld IH (1979) Clin Res 27:A445

    Google Scholar 

  9. Raisfeld IH (1980) Clin Res 28:A530

    Google Scholar 

  10. Raisfeld IH (1980) Toxicol Appl Pharm 56:326–336

    Article  CAS  Google Scholar 

  11. Raisfeld IH, Kundahl ER, Sawey MJ, Chovan JP, Depasquale J (1982) Clin Res 30:A437

    Google Scholar 

  12. Raisfeld IH (1981) Clin Pharm Ther 29:274

    Google Scholar 

  13. Tanaka W, Takita T (1979) Heterocycles 13:469–476

    Article  CAS  Google Scholar 

  14. Oka S (1980) Recent Results Cancer Res 74:163–171

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Ekimoto H, Aoyagi S, Koyu A, Kuramochi H, Yoshioka O, Matsuda A, Fujii A, Umezawa H (1979) J Antibiot 32:36–42

    Article  CAS  PubMed  Google Scholar 

  16. Umezawa H (1976) J Nat Prod 39:467

    Google Scholar 

  17. Manderville RA, Ellena JF, Hecht SM (1995) J Am Chem Soc 117:7891–7903

    Article  CAS  Google Scholar 

  18. Sucheck SJ, Ellena JF, Hecht SM (1998) J Am Chem Soc 120:7450–7460

    Article  CAS  Google Scholar 

  19. Kuwahara J, Sugiura Y (1988) Proc Natl Acad Sci USA 85:2459–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu W, Vanderwall DE, Turner CJ, Kozarich JW, Stubbe J (1996) J Am Chem Soc 118:1281–1294

    Article  CAS  Google Scholar 

  21. Wu W, Vanderwall DE, Stubbe JA, Kozarich JW, Turner CJ (1994) J Am Chem Soc 116:10843–10844

    Article  CAS  Google Scholar 

  22. Wu W, Vanderwall DE, Turner CJ, Hoehn S, Chen JY, Kozarich JW, Stubbe J (2002) Nucleic Acids Res 30:4881–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goodwin KD, Lewis MA, Long EC, Georgiadis MM (2008) Proc Natl Acad Sci USA 105:5052–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Andrea AD, Haseltine WA (1978) Proc Natl Acad Sci USA 75:3608–3612

    Article  PubMed  PubMed Central  Google Scholar 

  25. Takeshita M, Grollman AP, Ohtsubo E, Ohtsubo H (1978) Proc Natl Acad Sci USA 75:5983–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sausville EA, Peisach J, Horwitz SB (1976) Biochem Biophys Res Commun 73:814–822

    Article  CAS  PubMed  Google Scholar 

  27. Sausville EA, Stein RW, Peisach J, Horwitz SB (1978) Biochemistry 17:2746–2754

    Article  CAS  PubMed  Google Scholar 

  28. Segerman ZJ, Roy B, Hecht SM (2013) Biochemistry 52:5315–5327

    Article  CAS  PubMed  Google Scholar 

  29. Hoehn ST, Junker HD, Bunt RC, Turner CJ, Stubbe J (2001) Biochemistry 40:5894–5905

    Article  CAS  PubMed  Google Scholar 

  30. Lui SM, Vanderwall DE, Wu W, Tang XJ, Turner CJ, Kozarich JW, Stubbe J (1997) J Am Chem Soc 119:9603–9613

    Article  CAS  Google Scholar 

  31. Vanderwall DE, Lui SM, Wu W, Turner CJ, Kozarich JW, Stubbe J (1997) Chem Bio 4:373–387

    Article  CAS  Google Scholar 

  32. Wu W, Vanderwall DE, Lui SM, Tang XJ, Turner CJ, Kozarich JW, Stubbe J (1996) J Am Chem Soc 118:1268–1280

    Article  CAS  Google Scholar 

  33. Wu W, Vanderwall DE, Teramoto S, Lui SM, Hoehn ST, Tang XJ, Turner CJ, Boger DL, Kozarich JW, Stubbe J (1998) J Am Chem Soc 120:2239–2250

    Article  CAS  Google Scholar 

  34. Zhao CQ, Xia CW, Mao QK, Forsterling H, DeRose E, Antholine WE, Subczynski WK, Petering DH (2002) J Inorg Biochem 91:259–268

    Article  CAS  PubMed  Google Scholar 

  35. Ehrenfeld GM, Shipley JB, Heimbrook DC, Sugiyama H, Long EC, Vanboom JH, Vandermarel GA, Oppenheimer NJ, Hecht SM (1987) Biochemistry 26:931–942

    Article  CAS  PubMed  Google Scholar 

  36. Lehmann TE, Murray SA, Ingersoll AD, Reilly TM, Follett SE, Macartney KE, Harpster MH (2017) J Bio. Inorg Chem 22(121):136

    Google Scholar 

  37. Umezawa H (1997) In: Hecht SM (ed) Bleomycin: chemical, biochemical and biological aspects. Springer, New York, pp 24–36

    Google Scholar 

  38. Lehmann TE, Serrano ML, Que L Jr (2000) Biochemistry 39:3886–3898

    Article  CAS  PubMed  Google Scholar 

  39. Lehmann TE (2002) J Biol Inorg Chem 7:305–312

    Article  CAS  PubMed  Google Scholar 

  40. Lehmann TE, Li Y (2012) J Antibiot 65:25–33

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann TE, Li Y (2012) J Biol Inorg Chem 17:761–771

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Lehmann TE (2012) J Inorg Biochem 111:50–58

    Article  CAS  PubMed  Google Scholar 

  43. Raisfeld IH, Chu P, Hart NK, Lane A (1982) Toxicol Appl Pharm 63:351–362

    Article  CAS  Google Scholar 

  44. Ito K, Handa J, Irie Y, Ezura H, Kumagai M, Irie Y, Suzuki A, Hagiwara T, Yamane H, Miyamoto K, Yamashita T, Tsubosaki M, Matsuda AN, Konoha N (1979) J Antibiot 32:387–450

    CAS  Google Scholar 

  45. Tataurov AV, You Y, Owczarzy R (2008) Biophys Chem 133:66–70

    Article  CAS  PubMed  Google Scholar 

  46. Ren JS, Chaires JB (1999) Biochemistry 38:16067–16075

    Article  CAS  PubMed  Google Scholar 

  47. Ren JS, Chaires JB (2001) Drug Nucleic Acid Interact 340:99–108

    Article  CAS  Google Scholar 

  48. Wheelhouse RT, Chaires JB (2010) In: Fox KR (ed) Drug-DNA interaction protocols, pp 55–70

  49. Chaires JB (2005) In: Waring MJ, Chaires JB (eds) DNA binders and related subjects. Springer, Berlin, pp 33–53

  50. Chien M, Grollman AP, Horwitz SB (1977) Biochem 16:3641–3647

    Article  CAS  Google Scholar 

  51. Abraham AT, Zhou X, Hecht SM (2001) J Am Chem Soc 12:5167–5175

    Article  Google Scholar 

  52. Feigon J, Denny WA, Leupin W, Kearns DR (1984) J Med Chem 27:450–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in whole by the National Institute of Health [Grant R15GM106258]. Our gratitude also goes to Nippon Kayaku Co., Ltd. (Tokyo, Japan) for the generous gift of peplomycin. We also acknowledge Dr. Alexander Goroncy for help collecting the NMR data presented in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa E. Lehmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Follett, S.E., Ingersoll, A.D., Murray, S.A. et al. Interaction of Zn(II)bleomycin-A2 and Zn(II)peplomycin with a DNA hairpin containing the 5′-GT-3′ binding site in comparison with the 5′-GC-3′ binding site studied by NMR spectroscopy. J Biol Inorg Chem 22, 1039–1054 (2017). https://doi.org/10.1007/s00775-017-1482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1482-z

Keywords

Navigation