Skip to main content
Log in

EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new Cu(II) dinuclear complex, Cu2L2 (1) was afforded employing the potentially pentatentate Schiff base precursor H2L, a refluxed product of o-vanillin and diethylenetriamine in methanol. Complex 1 was systematically characterized by FTIR, UV–Vis, emission and EPR spectrometry. The single crystal X-ray diffraction analysis of 1 reveals that the copper atom exhibits a distorted square planar geometry, comprising two pairs of phenolato-O and imine-N donors from two different H2L ligands. The temperature dependent magnetic interpretation agrees with the existence of weak antiferromagnetic interactions between the bridging dinuclear Cu(II) ions. A considerable body of experimental evidence has been accumulated to elucidate the magneto-structural relationship in this dinuclear Cu(II) complex by DFT computation. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy on M. tuberculosis H37Ra (ATCC 25177) and M. tuberculosis H37Rv (ATCC 25618) strains. The practical applicability of the ligand and complex 1 has been examined in living cells (African Monkey Vero Cells). The MTT assay proves the non-toxicity of the probe up to 100 mg mL−1.

Graphical abstract

A new homometallic dinuclear Cu(II) complex is afforded with a tetradentate Schiff base precursor. EPR interpretation and temperature dependent magnetic studies show that complex 1 has weak antiferromagnetic coupling and DFT computation is governed to explain the magneto-structural correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  2. Robson R (2000) J Chem Soc Dalton Trans 21(21):3735–3744. doi:10.1039/b003591m

    Article  Google Scholar 

  3. Song Y, Massera C, Roubeau O, Gamez P, Manotti-Lanfredi AM, Reedijk J (2004) Inorg Chem 43:6842–6847

    Article  CAS  PubMed  Google Scholar 

  4. Saalfrank RW, Demleitner B(1999) Transition metals in supramolecular chemistry. In: Sauvage JP (ed) Perspectives in supramolecular chemistry, vol 5. Wiley, New york, p 1

  5. Blake AJ, Champness NR, Hubberstey P, Withersby MA, Schroder M (1999) Coord Chem Rev 183:117–138

    Article  CAS  Google Scholar 

  6. Thompson LK, Mandal SK, Tandon SS, Bridson JN, Park MK (1996) Inorg Chem 35:3117–3125

    Article  CAS  PubMed  Google Scholar 

  7. Nanda KK, Thompson LK, Bridson JN, Nag K (1994) J Chem Soc Chem Commun. doi:10.1039/c39940001337

    Google Scholar 

  8. Mohanta S, Nanda KK, Thompson LK, Florke U, Nag K (1998) Inorg Chem 37:1465–1472

    Article  CAS  Google Scholar 

  9. Ruiz E, Cano J, Alvarez S, Alemany P (1998) J Am Chem Soc 120:11122–11129

    Article  CAS  Google Scholar 

  10. Manca G, Cano J, Ruiz E (2009) Inorg Chem 48:3139–3144

    Article  CAS  PubMed  Google Scholar 

  11. Lin P-H, Burchell TJ, Ungur L, Chibotaru LF, Wernsdorfer W, Murugesu M (2009) Angew Chem Int Ed 48:9489–9492

    Article  CAS  Google Scholar 

  12. Kahn O (ed) (1996) Magnetism: a supramolecular function NATO ASI Series C, vol 484. Kluwer Academic Publishers, Dordrecht

  13. Journaux Y, Kahn O, Zarembowitch J, Galy J, Jaud J (1983) J Am Chem Soc 105:7585–7591

    Article  CAS  Google Scholar 

  14. Kahn O, Galy J, Journaux Y, Moregenstern-Badarau I (1982) J Am Chem Soc 104:2165–2176

    Article  CAS  Google Scholar 

  15. Ohba M, Tamaki H, Matsumoto N, Okawa H (1993) Inorg Chem 32:5385–5390

    Article  CAS  Google Scholar 

  16. Kahn O (1993) Molecular magnetism. VCH, Weinheim

    Google Scholar 

  17. Mastropaolo D, Powers DA, Potenza JA, Schugar HJ (1976) Inorg Chem 15:1444–1451

    Article  CAS  Google Scholar 

  18. Zhang G, Yang G, Ma JS (2006) Cryst Growth Des 6:375–381

  19. Hodgson DJ (1975) Prog Inorg Chem 19:173–178

    CAS  Google Scholar 

  20. Whittaker JW (1994) Metalloenzymes involving amino acid residue related radicals. In: Sigel H, Sigel A (eds), vol 30 Marcel Dekker, New York, p 315

  21. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    Article  CAS  PubMed  Google Scholar 

  22. Berends HP, Stephan DW (1987) Inorg Chem 26:749–754

    Article  CAS  Google Scholar 

  23. Nishida Y, Shimo H, Maehara H, Kida S (1985) J Chem Soc Dalton Trans 1985:1945–1951

    Article  Google Scholar 

  24. Holz RC, Brink JM, Gobena FT, O’Connor CJ (1994) Inorg Chem 33:6086–6092

    Article  CAS  Google Scholar 

  25. Fondo M, Garcıa-Deibe AM, Sanmartın J, Bermejo MR, Lezama L, Rojo T (2003) Eur J Inorg Chem 2003(20):3703–3706. doi:10.1002/ejic.200300478

    Article  Google Scholar 

  26. Fondo M, Garcıa-Deibe AM, Corbella M, Ribas J, LlamasSaiz A, Bermejo MR, Sanmartın J (2004) J Chem Soc Dalton Trans 3503–3507

  27. Hay AS (1998) J Polym Sci Part A Polym Chem 36:505–511

    Article  CAS  Google Scholar 

  28. Jazdzewski BA, Tolman WB (2000) Coord Chem Rev 200–202:633–685

    Article  Google Scholar 

  29. Jazdzewski BA, Holland PL, Pink M, Young VG Jr, Spencer DJE, Tolman WB (2001) Inorg Chem 40:6097–6107 (and references therein)

    Article  CAS  PubMed  Google Scholar 

  30. Lall N, Sarma MD, Hazra B, Meyer JJ (2003) J Antimicrob Chemother 51:435–438

    Article  CAS  PubMed  Google Scholar 

  31. Banfi E, Mamolo MG, Zampieri D, Vio L, Bragadin CM (2001) J Antimicrob Chemother 48:705–711

    Article  CAS  PubMed  Google Scholar 

  32. Das K, Panda U, Datta A, Roy S, Mondal S, Massera C, Askun T, Celikboyun P, Garribba E, Sinha C, Anand K, Akitsu T, Kobayashi K (2015) New J Chem 39:7309

    Article  CAS  Google Scholar 

  33. Eaten DF (1988) Pure Appl Chem 60:1107–1114

    Google Scholar 

  34. Stoyanov SR, Villegas JM, Rillema DP (2002) Inorg Chem 41:2941–2945

    Article  CAS  PubMed  Google Scholar 

  35. WINEPR SimFonia, version 1.25 (1996) Bruker Analytische Messtechnik GmbH, Karlsruhe

  36. SADABS Bruker AXS (2004) Madison, Wisconsin; SAINT, Software Users Guide, Version 6.0; Bruker Analytical X-ray Systems, Madison 1999

  37. Sheldrick GM (1999) SADABS v2.03: area-detector absorption correction. University of Göttingen, Germany

  38. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  39. Sheldrick GM (2008) Acta Crystallogr A64:112–122

    Article  Google Scholar 

  40. Farrugia LJ (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  41. van der Sluis P, Spek AL (1990) Acta Crystallogr Sect A 46:194–201

    Article  Google Scholar 

  42. Nardelli M (1996) J Appl Crystallogr 29:296–300

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Phys Rev B Cond Matter Mater Phys 37:785–789

  46. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theo Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, GillPMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03 Revision D 01. Gaussian Inc., Wallingford

  48. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  49. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  50. Casida MK, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  51. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  52. Cossi M, Rega N, Scalmani G, Barone V (2003) Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  53. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  PubMed  Google Scholar 

  54. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  55. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  56. Neese F (2013) ORCA—an ab initio, density functional, and semi-empirical program package, version 3.0. Max-Planck-Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr

  57. Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchange coupled systems. Springer, Berlin

    Book  Google Scholar 

  58. Heisenberg WZ (1926) Physik 38:411–426

    Article  Google Scholar 

  59. Van Vleck JH (1932) The theory of electronic and magnetic susceptibilies. Oxford University, London

    Google Scholar 

  60. Noodleman L (1981) J Chem Phys 74:5737–5743

    Article  CAS  Google Scholar 

  61. Noodleman L, Case DA (1992) Adv Inorg Chem 38:423–470

    Article  CAS  Google Scholar 

  62. Noodleman L, Davidson ER (1986) Chem Phys 109:131–143

    Article  Google Scholar 

  63. Becton BD (2002) Dickinson and Company Newsletter BD Bactec MGIT 960 SIRE kit now FDA-cleared for susceptibility testing of Mycobacterium tuberculosis. Microbiology News Ideas 13:4

    Google Scholar 

  64. NCCLS (2003). National Committee for Clinical Laboratory Standards (NCCLS). Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approved standard. NCCLS document M24-A [ISBN 1-56238 500-3]. NCCLS, Pennsylvania

  65. Collins L, Franzblau, SG (1997) Antimicrob Agents Chemother 41:1004–1009

  66. Jimenez-Arellanes A, Meckes M, Ramirez R, Torres J, Luna-Herrera J (2003) Phytother Res 17:903–908

  67. Battu GR, Kumar BM (2010) Willd Pharmacognosy J 2:456–463

    Article  Google Scholar 

  68. Bag P, Chattopadhyay D, Mukherjee H, Ojha D, Mandal N, Chawla MS, Chatterjee T, Das G, Chakraborti S (2012) Virol J 9:98–109

    Article  PubMed  PubMed Central  Google Scholar 

  69. Banerjee D, Mandal SM, Das A, Hegde ML, Bhakat KK (2011) J Biol Chem 286:6006–6016

    Article  CAS  PubMed  Google Scholar 

  70. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds, parts A and B, 5th edn. Wiley, New York

    Google Scholar 

  71. Quintero-Tellez G, Alvarez CMG, Bernès S, Alcantara-Flores JL, Reyes-Ortega Y (2008) Acta Crystallogr Sect E64:m631

    Google Scholar 

  72. McKenzie ED, Selvey SJ (1985) Inorg Chim Acta 101:127

    Article  CAS  Google Scholar 

  73. Benetollo F, di Bernardo P, Tamburini S, Vigato PA, Zanonato P (2008) Inorg Chem Commun 11:246

    Article  CAS  Google Scholar 

  74. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, New York

    Google Scholar 

  75. Chang JH, Choi YM, Shin Y-K (2001) Bull Korean Chem Soc 22:527–533

    CAS  Google Scholar 

  76. Thakurta S, Roy P, Rosair G, Gómez-García CJ, Garribba E, Mitra S (2009) Polyhedron 28:695–702

    Article  CAS  Google Scholar 

  77. Kállay C, Cattari M, Sanna D, Várnagy K, Süli-Vargha H, Csámpai A, Sóvágó I, Micera G (2004) New J Chem 28:727–734

    Article  Google Scholar 

  78. Hathaway BJ, Billing DE (1970) Coord Chem Rev 5:143–207

    Article  CAS  Google Scholar 

  79. Garribba E, Micera G (2006) J Chem Ed 83:1229–1232

    Article  CAS  Google Scholar 

  80. Maki AH, Mc Garvey BR (1958) J Chem Phys 29:35–38

    Article  CAS  Google Scholar 

  81. Hasty EF, Colburn TJ, Hendrikson DN (1973) Inorg Chem 12:2414–2421

    Article  CAS  Google Scholar 

  82. Klement R, Stock F, Elias H, Paulus H, Pelikán P, Valko M, Mazúr M (1999) Polyhedron 18:3617–3628

    Article  CAS  Google Scholar 

  83. Thakurta S, Chakraborty J, Rosair G, Tercero J, El Fallah MS, Garribba E, Mitra S (2008) Inorg Chem 47:6227–6235

    Article  CAS  PubMed  Google Scholar 

  84. Thakurta S, Rizzoli C, Butcher RJ, Gómez-García CJ, Garribba E, Mitra S (2010) Inorg Chim Acta 363:1395–1403

    Article  CAS  Google Scholar 

  85. Ray A, Mitra S, Khalaji AD, Atmani C, Cosquer N, Triki S, Clemente-Juan JM, Cardona-Serra S, Gomez-Garcia CJ, Butcher RJ, Garribba E, Xu D (2010) Inorg Chim Acta 363:3580–3588

    Article  CAS  Google Scholar 

  86. Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–708

    Article  CAS  PubMed  Google Scholar 

  87. Jeffery JC, Maher JP, Otter CA, Thornton P, Ward MD (1995) J Chem Soc Dalton Trans 819–824

  88. van Albada G, Mutikainen I, Smeets WJJ, Spek AL, Turpeinen U, Reedijk J (2002) Inorg Chim Acta 327:134–139

    Article  Google Scholar 

  89. Alves WA, de Almeida Santos RH, Paduan-Filho A, Becerra CC, Borin AC, Ferriera AMDC (2004) Inorg Chim Acta 357:2269–2278

    Article  CAS  Google Scholar 

  90. Pradeep CP, Das SK (2009) Polyhedron 28:630–636

  91. Saha S, Sasmal A, Choudhury CR, Gomez-Garcia CJ, Garribba E, Mitra S (2014) Polyhedron 69:262–269

    Article  CAS  Google Scholar 

  92. Bertini I, Canti G, Grassi R, Scozzafava A (1980) Inorg Chem 19:2198–2200

    Article  CAS  Google Scholar 

  93. Trias J, Jarlier V, Benz R (1992) Science 258:1479–1481

    Article  CAS  PubMed  Google Scholar 

  94. Trias J, Benz R (1994) Mol Microbiol 14:283–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KD and CS would like to thank the Council of Scientific and Industrial Research (CSIR, Sanction No. 01(2731)/13/EMR-II,) New Delhi, India to carry out the present study. A.F. thanks the DGICYT of Spain (projects CTQ2014-57393-C2-1-P and CONSOLIDER INGENIO 2010 CSD2010-00065, FEDER funds) for financial support. We thank the CTI (UIB) for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amitabha Datta, Chen-Hsiung Hung or Chittaranjan Sinha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Patra, C., Sen, C. et al. EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor. J Biol Inorg Chem 22, 481–495 (2017). https://doi.org/10.1007/s00775-016-1428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1428-x

Keywords

Navigation