Skip to main content
Log in

DNA binding, DNA cleavage and HSA interaction of several metal complexes containing N-(2-hydroxyethyl)-N′-benzoylthiourea and 1,10-phenanthroline ligands

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Four novel ternary metal complexes of the type [M(Phen)(L1)2)] [phen = 1,10-phenanthroline, L1 = N-(2-hydroxyethyl)-N′-benzoylthiourea, M = Ni(II)(1), Co(II) (2), Cu(II) (3), Pd(II) (4)] were synthesized. The organic ligands and their corresponding organometallic complexes have been characterized using UV–vis absorption spectroscopy, element analysis, infrared radiation spectroscopy and fluorescence spectra. DNA binding and cleavage studies of these complexes were conducted in detail. In vitro DNA-binding properties were studied by electronic absorption spectra and fluorescence spectra methods. The results indicate that all of the ternary metal complexes can efficiently bind to DNA via intercalation mode. The DNA-binding constants for all ternary compounds are around 4 × 106 M−1. The binding propensity of the complexes to human serum albumin (HSA) was also investigated. Agarose gel electrophoresis study revealed that the metal complexes could cleave super-coiled pBR322 DNA to a nicked form in the absence of external agents. In vitro anti bacterial studies show that copper complex has weak antibacterial activities. Copper complex exhibits a better biological activity among all complexes. This study provides a new perspective and evaluation on the role and importance of the effect factors on the medicinal properties of benzoylthiourea compounds.

Graphical abstract

Synchronous fluorescence spectra of HSA (10 μM) as a function of concentration of the complexes 1–4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

HSA:

Human serum albumin

DNA:

Deoxyribose nucleic acid

CT-DNA:

Calf-thymus DNA

DMSO:

Dimethyl sulphoxide

BSA:

Bovine serum albumin

Tris-HCl:

Tris(hydroxymethyl)aminomethane

EB:

Ethidium bromide

References

  1. Aly AA, Ahmed EK, El-Mokadem KM, Hegazy ME-AF (2007) J Sulfur Chem 28:73–93

    Article  CAS  Google Scholar 

  2. Lin Q, Yao H, Wei T, Zhang Y (2009) Indian J Chem 48B:124–127

    CAS  Google Scholar 

  3. Zhao MM, Dong XY, Yang YH, Li G, Zhang YJ (2014) Asian J Chem 26:237–240

    Article  CAS  Google Scholar 

  4. Xue S, Ke S, Duan L (2004) Chin J Org Chem 24:227–230

    CAS  Google Scholar 

  5. Peng H, He H (2007) Chin J Org Chem 27:502–506

    CAS  Google Scholar 

  6. Xu Z, Liu B, Dong H, Wang M (2014) Chin J Org Chem 34:2517–2522

    Article  CAS  Google Scholar 

  7. del Campo R, Criado JJ, Garcı́a E, Hermosa MAR, Jiménez-Sánchez A, Manzano JL et al (2002) J Inorg Biochem 89:74–82

    Article  PubMed  Google Scholar 

  8. Kurt G, Sevgi F, Mercimek B (2009) Chem Pap 63:548–553

    Article  CAS  Google Scholar 

  9. Stefanska J, Szulczyk D, Koziol AE, Miroslaw B, Kedzierska E, Fidecka S et al (2012) Eur J Med Chem 55:205–213

    Article  CAS  PubMed  Google Scholar 

  10. Tahir S, Badshah A, Hussain RA, Tahir MN, Tabassum S, Patujo JA et al (2015) J Mol Struct 1099:215–225

    Article  CAS  Google Scholar 

  11. Wang M-J, Nan X, Feng G, Yu H-T, Hu G-F, Liu Y-Q (2014) Ind Crops Prod 55:11–18

    Article  CAS  Google Scholar 

  12. Maruyama T, Seki N, Onda K, Suzuki T, Kawazoe S, Hayakawa M et al (2009) Biorg Med Chem 17:5510–5519

    Article  CAS  Google Scholar 

  13. Zeng Y-Q, Cao R-Y, Yang J-L, Li X-Z, Li S, Zhong W (2016) Eur J Med Chem 119:83–95

    Article  CAS  PubMed  Google Scholar 

  14. Chetana PR, Srinatha BS, Somashekar MN, Policegoudra RS (2016) J Mol Struct 1106:352–365

    Article  CAS  Google Scholar 

  15. Singh A, Bharty MK, Bharati P, Bharti A, Singh S, Singh NK (2015) Polyhedron 85:918–925

    Article  CAS  Google Scholar 

  16. Selvakumaran N, Pratheepkumar A, Ng SW, Tiekink ERT, Karvembu R (2013) Inorg Chim Acta 404:82–87

    Article  CAS  Google Scholar 

  17. Rauf MK, Yaseen S, Badshah A, Zaib S, Arshad R, Imtiaz-Ud-Din, et al (2015) J Biol Inorg Chem 20(3):541–554

    Article  CAS  PubMed  Google Scholar 

  18. Plutín AM, Mocelo R, Alvarez A, Ramos R, Castellano EE, Cominetti MR et al (2014) J Inorg Biochem 134:76–82

    Article  PubMed  Google Scholar 

  19. El-Ayaan U (2011) J Mol Struct 998:11–19

    Article  CAS  Google Scholar 

  20. Plutín AM, Alvarez A, Mocelo R, Ramos R, Castellano EE, da Silva MM et al (2016) Inorg Chem Commun 63:74–80

    Article  Google Scholar 

  21. Correa RS, Oliveira KM, Pérez H, Plutín AM, Ramos R, Mocelo R, et al. (2015) Arab J Chem. doi:10.1016/j.arabjc.2015.10.006

    Google Scholar 

  22. Barra CV, Rocha FV, Morel L, Gautier A, Garrido SS, Mauro AE et al (2016) Inorg Chim Acta 446:54–60

    Article  CAS  Google Scholar 

  23. Correa RS, de Oliveira KM, Delolo FG, Alvarez A, Mocelo R, Plutin AM et al (2015) J Inorg Biochem 150:63–71

    Article  CAS  PubMed  Google Scholar 

  24. Sudhamani CN, Bhojya Naik HS, Sangeetha Gowda KR, Giridhar M, Girija D, Prashanth Kumar PN (2015) Spectrochim Acta A 138:780–788

  25. Kashanian S, Khodaei MM, Roshanfekr H, Peyman H (2013) Spectrochim Acta A 114:642–649

    Article  CAS  Google Scholar 

  26. Gurumoorthy P, Mahendiran D, Prabhu D, Arulvasu C, Rahiman AK (2015) J Mol Struct 1080:88–98

    Article  CAS  Google Scholar 

  27. Ganeshpandian M, Ramakrishnan S, Palaniandavar M, Suresh E, Riyasdeen A, Akbarsha MA (2014) J Inorg Biochem 140:202–212

    Article  CAS  PubMed  Google Scholar 

  28. Thamilarasan V, Jayamani A, Sengottuvelan N (2015) Eur J Med Chem 89:266–278

    Article  CAS  PubMed  Google Scholar 

  29. Kannan D, Arumugham M (2013) Int J Inorg Bioinorg Chem 3:8–15

    Google Scholar 

  30. Peng B, Li T, Zhang Z, Shen Y, Zhou M, Mo Z (2014) Chem Reagents 36:205–261

    CAS  Google Scholar 

  31. Peng B, Lin B, Zhang Z, Chen P, Ma S (2012) J Northwest Norm Univ Nat Sci 48:51–56

    CAS  Google Scholar 

  32. Koch KR, Sacht C, Bourne S (1995) Inorg Chim Acta 232:109–115

    Article  CAS  Google Scholar 

  33. Rotondo A, Barresi S, Cusumano M, Rotondo E (2012) Polyhedron 45:23–29

    Article  CAS  Google Scholar 

  34. Rao R, Patra AK, Chetana PR (2008) Polyhedron 27:1343–1352

    Article  CAS  Google Scholar 

  35. Srishailam A, Gabra NM, Kumar YP, Reddy KL, Devi CS, Anil Kumar D et al (2014) J Photochem Photobiol, B 141:47–58

    Article  CAS  Google Scholar 

  36. Devi J, Batra N (2015) Spectrochim Acta A 135:710–719

    Article  CAS  Google Scholar 

  37. Reddy PR, Shilpa A, Raju N, Raghavaiah P (2011) J Inorg Biochem 105:1603–1612

    Article  CAS  PubMed  Google Scholar 

  38. Leela DS, Ushaiah B, Anupama G, Sunitha M, Kumari CG (2015) J Fluoresc 25:185–197

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Xian L, Wei T, Cai L (2003) Acta Cryst E E59:o817–o819

    Article  Google Scholar 

  40. Cîrcu V, Ilie M, Iliş M, Dumitraşcu F, Neagoe I, Păsculescu S (2009) Polyhedron 28:3739–3746

    Article  Google Scholar 

  41. Patel MN, Gandhi DS, Parmar PA, Joshi HN (2012) J Coord Chem 65:1926–1936

    Article  CAS  Google Scholar 

  42. Barcelo F, Barcelo I, Gavilanes F, Ferragut JA, Yanovich S, Gonzales-Ros JM (1986) Biochim Biophys Acta 884:172–181

    Article  CAS  PubMed  Google Scholar 

  43. Liu H, Li L, Guo Q, Dong J, Li J (2013) Transition Met Chem 38:441–448

    Article  CAS  Google Scholar 

  44. Zhai S, Guo Q, Dong J, Xu T, Li L (2014) Transition Met Chem 39:271–280

    Article  CAS  Google Scholar 

  45. Tabassum S, Zaki M, Afzal M, Arjmand F (2014) Eur J Med Chem 74:509–523

    Article  CAS  PubMed  Google Scholar 

  46. Tabassum S, Ahmad M, Afzal M, Zaki M, Bharadwaj PK (2014) J Photochem Photobiol, B 140:321–331

    Article  CAS  Google Scholar 

  47. Li R, Lu J, Li D, Cheng S, Dou J (2014) Transition Met Chem 39:507–517

    Article  CAS  Google Scholar 

  48. Borowska J, Sierant M, Sochacka E, Sanna D, Lodyga-Chruscinska E (2015) J Biol Inorg Chem 20:989–1004

    Article  CAS  PubMed  Google Scholar 

  49. Moosun SB, Jhaumeer-Laulloo S, Hosten EC, Gerber TIA, Bhowon MG (2015) Transition Met Chem 40:445–458

    Article  CAS  Google Scholar 

  50. Tabassum S, Zaki M, Ahmad M, Afzal M, Srivastav S, Srikrishna S et al (2014) Eur J Med Chem 83:141–154

    Article  CAS  PubMed  Google Scholar 

  51. Lakowicz JR, Weber G (1973) Biochemistry-US 12:4161–4170

    Article  CAS  Google Scholar 

  52. Anjomshoa M, Torkzadeh-Mahani M (2015) Spectrochim Acta A 150:390–402

    Article  CAS  Google Scholar 

  53. Miller JN (1979) Proc Anal Div Chem 16:203–208

    CAS  Google Scholar 

  54. Selvakumaran N, Bhuvanesh NSP, Endo A, Karvembu R (2014) Polyhedron 75:95–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (21174114, 21167015), the Innovative Team of Ministry of Education of China (IRT15R56), and “Integration and demonstration of the key technology of industrial capacity promotion for Lanzhou Lily” (2015 technological innovation special fiscal funds of Gansu province) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, B., Gao, Z., Li, X. et al. DNA binding, DNA cleavage and HSA interaction of several metal complexes containing N-(2-hydroxyethyl)-N′-benzoylthiourea and 1,10-phenanthroline ligands. J Biol Inorg Chem 21, 903–916 (2016). https://doi.org/10.1007/s00775-016-1388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1388-1

Keywords

Navigation