Skip to main content
Log in

Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)–irbesartan complex: structure–antihypertensive activity relationships in Cu(II)–sartan complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV–visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand. No antioxidant effects were displayed by both compounds, though CuIrb behaved as a weak 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenger (IC50 = 425 μM). The measurements of the contractile capacity on human mesangial cell lines showed that CuIrb improved the antihypertensive effects of the parent medication. In vitro cell growth inhibition against prostate cancer cell lines (LNCaP and DU 145) was measured for CuIrb, irbesartan and copper(II). These cell lines have been selected since the angiotensin II type 1 (AT1) receptor (that was blocked by the angiotensin receptor blockers, ARB) has been identified in them. The complex exerted anticancer behavior (at 100 μM) improving the activity of the ligand. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death.

Graphical Abstract

Experimental and DFT characterization of an irbesartan copper(II) complex has been performed. The complex exhibits low scavenging activity against DPPH· and significant growth inhibition of LNCaP and DU 145 prostate cancer cell lines. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. This compound improved the antihypertensive effect of irbesartan. This effect was observed earlier for the mononuclear Cu–candesartan complex, but not in structurally modified sartans forming dinuclear or octanuclear Cu–sartan compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid diammonium salt)

Ang II:

Angiotensin II

ARBs:

AT1 receptor blockers

AT1:

Ang II type 1 receptor

CuIrb:

[Cu(Irb)2(H2O)], Irb: irbesartan

DPPH. :

1,1-Diphenyl-2-picrylhydrazyl radical

DTA:

Differential thermal analysis

HMC:

Human mesangial cells

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NBT:

Nitroblue tetrazolium

PBS:

Phosphate buffered saline

PCSA:

Planar cell surface area

PI:

Propidium iodide

RAS:

Renin–angiotensin system

SOD:

Superoxide dismutase

TGA:

Thermogravimetric analysis

References

  1. Garrido AM, Griendling KK (2009) Mol Cell Endocrinol 302:148–158

    Article  CAS  PubMed  Google Scholar 

  2. Duncia JV, Chiu AT, Carini DJ, Gregory GB, Johnson AL, Price WA, Wells GJ, Wong PC, Calabrese JC, Timmermans PB (1990) J Med Chem 33:1312–1329

    Article  CAS  PubMed  Google Scholar 

  3. Ram CVS (2008) Am J Med 121:656–663

    Article  CAS  PubMed  Google Scholar 

  4. Fotakis C, Christodouleas D, Zoumpoulakis P, Kritsi E, Benetis N-P, Mavromoustakos T, Reis H, Gili A, Papadopoulos MG, Zervou M (2011) J Phys Chem B 115:6180–6192

    Article  CAS  PubMed  Google Scholar 

  5. Potamitis C, Zervou M, Katsiaras V, Zoumpoulakis P, Kyrikou I, Argyropoulos D, Vatougia G, Mavromoustakos T (2009) J Chem Inform Model 49:726–739

    Article  CAS  Google Scholar 

  6. Franca CA, Etcheverry SB, Diez RP, Williams PAM (2009) J Raman Spectrosc 2009:1296–1300

    Article  Google Scholar 

  7. Abali H, Güllü IH, Engin H, Haznedaroğlu IC, Erman M, Tekuzman G (2002) Med Hypotheses 59:344–348

    Article  CAS  PubMed  Google Scholar 

  8. Deshayes F, Nahmias C (2005) Trends Endocrinol Metab 16:293–299

    Article  CAS  PubMed  Google Scholar 

  9. Arafat H, Gong Q, Chipitsyna G, Rizvi A, Saa CT, Yeo CJ (2007) J Am Coll Surg 204:996–1005 (discussion 1005–1006)

    Article  PubMed  Google Scholar 

  10. Klevay LM, Ann NY (1980) Acad Sci 355:140–151

    Article  CAS  Google Scholar 

  11. Suliburska J, Bogdanski P, Jakubowski H (2014) Eur J Pharmacol 738:326–331

    Article  CAS  PubMed  Google Scholar 

  12. Etcheverry SB, Ferrer EG, Naso L, Barrio DA, Lezama L, Rojo T, Williams PAM (2007) Bioorg Med Chem 15:6418–6424

    Article  CAS  PubMed  Google Scholar 

  13. Etcheverry S, Di Virgilio AL, Nascimento OR, Williams PAM (2012) J Inorg Biochem 107:25–33

    Article  CAS  PubMed  Google Scholar 

  14. Islas MS, Lezama L, Griera Merino M, Cortes MA, Rodriguez Puyol M, Ferrer EG, Williams PAM (2013) J Inorg Biochem 123:23–33

    Article  CAS  PubMed  Google Scholar 

  15. Islas MS, Martínez Medina JJ, López Tévez LL, Rojo T, Lezama L, Griera Merino M, Calleros L, Cortes MA, Rodriguez Puyol M, Echeverría GA, Piro OE, Ferrer EG, Williams PAM (2014) Inorg Chem 53:5724–5737

    Article  CAS  PubMed  Google Scholar 

  16. Chow L, Rezmann L, Imamura K, Wang L, Catt K, Tikellis C, Louis WJ, Frauman AG, Louis SNS (2008) Prostate 68:651–660

    Article  CAS  PubMed  Google Scholar 

  17. Analytische Messtechnik-GmbH (1996) WINEPR SimFonia v1.25 software, Bruker

  18. Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215–241

    Article  Google Scholar 

  19. Dunning TH, Hay PJ (1977) In: Schaefer HF (ed) Methods of electronic structure theory, vol 3. Plenum press, New York

    Google Scholar 

  20. Casida ME, Jamorski C, Casida KC, Salahub DRJ (1998) Chem Phys 108:4439–4449

    CAS  Google Scholar 

  21. Keresztury G, Holly S, Besenyei G, Varga J, Wang A, Durig JR (1993) Spectrochim Acta Part A Mol Spectrosc 49:2007–2026

    Article  Google Scholar 

  22. Cariaga-Martinez AE, López-Ruiz P, Nombela-Blanco MP, Motiño O, González-Corpas A, Rodriguez-Ubreva J, Lobo MVT, Cortés MA, Colás B (2013) Cell Signal 25:1586–1597

    Article  CAS  PubMed  Google Scholar 

  23. Luo C, Li Y, Zhou B, Yang L, Li H, Feng Z, Li Y, Long J, Liu J (2014) Apoptosis 19:542–553

    Article  CAS  PubMed  Google Scholar 

  24. Calleros L, Lasa M, Rodríguez-Álvarez F, Toro M, Chiloeches A (2006) Apoptosis 11:1161–1173

    Article  CAS  PubMed  Google Scholar 

  25. Williams PAM, Ferrer EG, Correa MJ, Baran EJ, Castellano EE, Piro OE (2004) J Chem Crystallogr 34:285–290

    Article  CAS  Google Scholar 

  26. Dutta RL, Satapathi SK (1981) J Inorg Nucl Chem 43:1533–1539

    Article  CAS  Google Scholar 

  27. Lane TJ, Nakagawa I, Walter JL, Kandathil AJ (1962) Inorg Chem 1:267–276

    Article  CAS  Google Scholar 

  28. Klapötke TM, Schmid PC, Stierstorfer J, Szimhardt N (2016) Z Anorg Allg Chem 642:383–389

    Article  Google Scholar 

  29. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, Part B, 6th edn. John Wiley and Sons Inc, New Jersey

  30. van Albada GA, Quiroz-Castro ME, Mutikainen I, Turpeinen U, Reedijk J (2000) Inorg Chim Acta 298:221–225

    Article  Google Scholar 

  31. Tabbì G, Giuffrida A, Bonomo RP (2013) J Inorg Biochem 128:137–145

    Article  PubMed  Google Scholar 

  32. Hathaway BJ, Billing DE (1970) Coord Chem Rev 5:143–207

    Article  CAS  Google Scholar 

  33. Yamaguchi T, Takamura H, Matoba T, Terao J (1998) Biosci Biotechnol Biochem 62:1201–1204

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Zhao X, Gai C, Liu H, Xu Y, Li J (2011) Chem Res Chinese Univ 27:1–5

    Article  Google Scholar 

  35. Ohno K, Amano Y, Kakuta H, Niimi T, Takakura S, Orita M, Miyata K, Sakashita H, Takeuchi M, Komuro I, Higaki J, Horiuchi M, Kim-Mitsuyama S, Mori Y, Morishita R, Yamagishi S (2011) Biochem Biophys Res Commun 404:434–437

    Article  CAS  PubMed  Google Scholar 

  36. Funao K, Matsuyama M, Kawahito Y, Sano H, Chargui J, Touraine JL, Nakatani T, Yoshimura R (2008) Oncol Rep 20:295–300

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by UNLP, CONICET (PIP 0611), CICPBA and by ANPCyT (PICT2013 0569), Argentina and Grant Renal Research Network: FEDER funds ISCIII RETIC REDINREN RD012/20021/0006, by Grant from Fondo de Investigaciones Sanitarias (FIS/ISCIII PI11/01630 and PI14/02075) to DRP and (FIS/ISCIII PI14/01939) to MRP integrated into the National Plan of I + D + i and co-funded by FEDER and the Instituto de Salud Carlos III and by Instituto de Investigaciones Sanitarias Reina Sofía (IRSIN) and Fundación Renal Iñigo Álvarez de Toledo (FRIAT). EGF and PAMW are research fellows of CONICET and CICPBA, Argentina, respectively. MSI is a fellowship holder from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. M. Williams.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islas, M.S., Luengo, A., Franca, C.A. et al. Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)–irbesartan complex: structure–antihypertensive activity relationships in Cu(II)–sartan complexes. J Biol Inorg Chem 21, 851–863 (2016). https://doi.org/10.1007/s00775-016-1384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1384-5

Keywords

Navigation