Skip to main content
Log in

Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)FeII], [(PPy)FeII], [(PIm)FeII], and [(PImH)FeII], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and PPy, PIm, and PImH are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; PImH is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)FeII-(DIMPI)2] in the case of [(F8)FeII], while for the other hemes, mono-DIMPI compounds are obtained, [(PPy)FeII-(DIMPI)] [(2)-DIMPI], [(PIm)FeII-(DIMPI)] [(3)-DIMPI], and [(PImH)FeII-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. 19F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)FeII-(NO)], or low-spin six-coordinate compounds [(PPy)FeII-(NO)], [(PIm)FeII-(NO)], and [(PImH)FeII-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV–Vis, IR, 1H-NMR, and EPR spectroscopies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ghosh A (ed) (2008) The smallest biomolecules: diatomics and their interactions with heme proteins. Elsevier, Amsterdam

    Google Scholar 

  2. Zhu Y, Silverman RB (2008) Biochemistry 47:2231–2243

    Article  PubMed  CAS  Google Scholar 

  3. Aono S (2008) Dalton Trans 3137–3146

  4. Ohta T, Kitagawa T (2005) Inorg Chem 44:758–769

    Article  PubMed  CAS  Google Scholar 

  5. De Montellano PRO (2005) Cytochrome P-450: structure, mechanism, and biochemistry. Springer

  6. Walker FA (2005) J Inorg Biochem 99:216–236

    Article  PubMed  CAS  Google Scholar 

  7. Zhao Y, Brandish PE, Ballou DP, Marletta MA (1999) Proc Natl Acad Sci USA 96:14753–14758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Poulos TL (2006) Curr Opin Struct Biol 16:736–743

    Article  PubMed  CAS  Google Scholar 

  9. Ford PC, Bandyopadhyay S, Lim MD, Lorkovic IM (2008) The smallest biomolecules: diatomics and their interactions with heme proteins. In: Ghosh A (ed) Elsevier, Amsterdam, pp 66–91

  10. Tennyson AG, Lippard SJ (2011) Chem Biol 18:1211–1220

    Article  PubMed  CAS  Google Scholar 

  11. Traylor TG, Sharma VS (1992) Biochemistry 31:2847–2849

    Article  PubMed  CAS  Google Scholar 

  12. Schopfer MP, Wang J, Karlin KD (2010) Inorg Chem 49:6267–6282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Toledo JC Jr, Augusto O (2012) Chem Res Toxicol 25:975–989

    Article  PubMed  CAS  Google Scholar 

  14. Hunt AP, Lehnert N (2015) Acc Chem Res 48:2117–2125

    Article  PubMed  CAS  Google Scholar 

  15. Wilks A, Ikeda-Saito M (2014) Acc Chem Res 47:2291–2298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Matsui T, Unno M, Ikeda-Saito M (2010) Acc Chem Res 43:240–247

    Article  PubMed  CAS  Google Scholar 

  17. Schuller DJ, Wilks A, De Montellano PRO, Poulos TL (1999) Nat Struct Biol 6:860–867

    Article  PubMed  CAS  Google Scholar 

  18. Watkins CC, Boehning D, Kaplin AI, Rao M, Ferris CD, Snyder SH (2004) Proc Natl Acad Sci USA 101:2631–2635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Larsen RW, Mikšovská J (2007) Coord Chem Rev 251:1101–1127

    Article  CAS  Google Scholar 

  20. Vos MH (2008) Biochim Biophys Acta 1777:15–31

    Article  PubMed  CAS  Google Scholar 

  21. Spiro TG, Soldatova AV, Balakrishnan G (2013) Coord Chem Rev 257:511–527

    Article  PubMed  CAS  Google Scholar 

  22. Vos MH, Liebl U (2015) Biochim Biophys Acta 1847:79–85

    Article  PubMed  CAS  Google Scholar 

  23. Liebl U, Lambry JC, Vos MH (2013) Biochim Biophys Acta 1834:1684–1692

    Article  PubMed  CAS  Google Scholar 

  24. Spiro TG, Wasbotten IH (2005) J Inorg Biochem 99:34–44

    Article  PubMed  CAS  Google Scholar 

  25. Bandyopadhyay D, Walda KN, Grogan TM, Magde D, Traylor TG, Sharma VS (1996) Biochemistry 35:1500–1505

    Article  PubMed  CAS  Google Scholar 

  26. Derbyshire ER, Marletta MA (2007) J Biol Chem 282:35741–35748

    Article  PubMed  CAS  Google Scholar 

  27. Evans JP, Kandel S, De Montellano PRO (2009) Biochemistry 48:8920–8928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lucas HR, Karlin KD (2009) Metal Ions Life Sci 6:295–361

    Article  CAS  Google Scholar 

  29. Blouin GC, Schweers RL, Olson JS (2010) Biochemistry 49:4987–4997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Blouin GC, Olson JS (2010) Biochemistry 49:4968–4976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hematian S, Garcia-Bosch I, Karlin KD (2015) Acc Chem Res 48:2462–2474

    Article  PubMed  CAS  Google Scholar 

  32. Kim E, Helton ME, Wasser IM, Karlin KD, Lu S, Huang H-W, Moenne-Loccoz P, Incarvito CD, Rheingold AL, Honecker M, Kaderli S, Zuberbühler AD (2003) Proc Natl Acad Sci USA 100:3623–3628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Halime Z, Kieber-Emmons MT, Qayyum MF, Mondal B, Gandhi T, Puiu SC, Chufan EE, Sarjeant AAN, Hodgson KO, Hedman B, Solomon EI, Karlin KD (2010) Inorg Chem 49:3629–3645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Halime Z, Kotani H, Li Y, Fukuzumi S, Karlin KD (2011) Proc Natl Acad Sci USA 108:13990–13994

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI (2012) Angew Chem Int Ed 51:168–172

    Article  CAS  Google Scholar 

  36. Garcia-Bosch I, Adam SM, Schaefer AW, Sharma SK, Peterson RL, Solomon EI, Karlin KD (2015) J Am Chem Soc 137:1032–1035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Li Y, Sharma SK, Karlin KD (2013) Polyhedron 58:190–196

    Article  CAS  Google Scholar 

  38. Sharma SK, Rogler PJ, Karlin KD (2015) J Porphyrins Phthalocyanines 19:352–360

    Article  CAS  Google Scholar 

  39. Schopfer MP, Mondal B, Lee D-H, Sarjeant AAN, Karlin KD (2009) J Am Chem Soc 131:11304–11305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chufan EE, Puiu SC, Karlin KD (2007) Acc Chem Res 40:563–572

    Article  PubMed  CAS  Google Scholar 

  41. Ghiladi RA, Kretzer RM, Guzei I, Rheingold AL, Neuhold Y-M, Hatwell KR, Zuberbühler AD, Karlin KD (2001) Inorg Chem 40:5754–5767

    Article  PubMed  CAS  Google Scholar 

  42. Garcia-Bosch I, Sharma SK, Karlin KD (2013) J Am Chem Soc 135:16248–16251

    Article  PubMed  CAS  Google Scholar 

  43. Kim E, Shearer J, Lu S, Moeenne-Loccoz P, Helton ME, Kaderli S, Zuberbühler AD, Karlin KD (2004) J Am Chem Soc 126:12716–12717

    Article  PubMed  CAS  Google Scholar 

  44. Kamaraj K, Kim E, Galliker B, Zakharov LN, Rheingold AL, Zuberbühler AD, Karlin KD (2003) J Am Chem Soc 125:6028–6029

    Article  PubMed  CAS  Google Scholar 

  45. Wang J, Schopfer MP, Puiu SC, Sarjeant AAN, Karlin KD (2010) Inorg Chem 49:1404–1419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Berto TC, Praneeth VKK, Goodrich LE, Lehnert N (2009) J Am Chem Soc 131:17116–17126

    Article  PubMed  CAS  Google Scholar 

  47. Spek A (2009) Acta Crystallogr Sect D 65:148–155

    Article  CAS  Google Scholar 

  48. Jameson GB, Ibers JA (1979) Inorg Chem 18:1200–1208

    Article  CAS  Google Scholar 

  49. Kretzer RM, Ghiladi RA, Lebeau EL, Liang H-C, Karlin KD (2003) Inorg Chem 42:3016–3025

    Article  PubMed  CAS  Google Scholar 

  50. Song B, Yu B-S (2003) Bull Korean Chem Soc 24:981–985

  51. Wood MA, Dickinson K, Willey GR, Dodd GH (1987) Biochem J 247:675–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. A reviewer suggested the bending may be due to a pseudo Jahn-Teller effect arising from a slight weakening of the Fe-N5(imidazole) bond in (3)-DIMPI compared to that in (4)-DIMPI (see Table 2); see Kitagawa T et al. (2005) J Phys Chem B 109: 21110-21117

  53. Thompson DW, Kretzer RM, Lebeau EL, Scaltrito DV, Ghiladi RA, Lam K-C, Rheingold AL, Karlin KD, Meyer GJ (2003) Inorg Chem 42:5211–5218

    Article  PubMed  CAS  Google Scholar 

  54. Pauling L (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  55. Shimoni L, Glusker JP (2015) In: Hargittai I, Hargittai B (eds) Science of crystal structures: highlights in crystallography. Springer International Publishing, Cham, pp 187–203

    Chapter  Google Scholar 

  56. Kryachko E, Scheiner S (2004) J Phys Chem A 108:2527–2535

    Article  CAS  Google Scholar 

  57. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L (2003) Science 299:1037–1039

    Article  PubMed  CAS  Google Scholar 

  58. England J, Guo Y, Farquhar ER, Young VG, Münck E, Que L (2010) J Am Chem Soc 132:8635–8644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. As suggested by a reviewer, the room-temperature molecular structures for (3)-DIMPI and (4)-DIMPI may be dynamic with respect to Fe-C-N bending; the IR band observed for these complexes do seem to be asymmetric, and composed of two bands, possibly two conformers

  60. Lehnert N, Scheidt WR, Wolf MW (2014) In: Mingos DMP (ed) Nitrosyl complexes in inorganic chemistry, biochemistry and medicine ii. Springer, New York, pp 155–223

    Google Scholar 

  61. Hayes RG, Ellison MK, Scheidt WR (2000) Inorg Chem 39:3665–3668

    Article  PubMed  CAS  Google Scholar 

  62. Wasser IM, Huang H-W, Moeenne-Loccoz P, Karlin KD (2005) J Am Chem Soc 127:3310–3320

    Article  PubMed  CAS  Google Scholar 

  63. Praneeth VKK, Neese F, Lehnert N (2005) Inorg Chem 44:2570–2572

    Article  PubMed  CAS  Google Scholar 

  64. Scheidt WR, Brinegar AC, Ferro EB, Kirner JF (1977) J Am Chem Soc 99:7315–7322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01 GM 060353 to K.D.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Karlin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Kim, H., Rogler, P.J. et al. Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization. J Biol Inorg Chem 21, 729–743 (2016). https://doi.org/10.1007/s00775-016-1369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1369-4

Keywords

Navigation