Skip to main content

Advertisement

Log in

The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Serine/threonine protein phosphatases have been described in many pathogenic bacteria as essential enzymes involved in phosphorylation-dependent signal transduction pathways and frequently associated with the virulence of these organisms. An inspection of Mycoplasma synoviae genome revealed the presence of a gene (prpC) encoding a putative protein phosphatase of the protein phosphatase 2C (PP2C) subfamily. Here, we report a complete biochemical characterization of M. synoviae phosphatase (PrpC) and the particular role of metal ions in the structure–function relationship of this enzyme. PrpC amino acid sequence analysis revealed that all the residues involved in the dinuclear metal center and the putative third metal ion-coordinating residues, conserved in PP2C phosphatases, are present in PrpC. PrpC is a monomeric protein able to dephosphorylate phospho-substrates with Mn2+ ions’ dependence. Thermal stability analysis demonstrated the enzyme stability at mild temperatures and the influence of Mn2+ ions in this property. Mass spectrometry analysis suggested that three metal ions bind to PrpC, two of which with an apparent high-affinity constant. Mutational analysis of the putative third metal-coordinating residues, Asp122 and Arg164, revealed that these variants exhibited a weaker binding of manganese ions, and that both mutations affected PrpC phosphatase activity. According to these results, PrpC is a metal-dependent protein phosphatase member with an improved stability in the holo form and with Asp122, possibly implicated in the third metal-binding site, essential to catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ESI-MS:

Electrospray ionization-mass spectrometry

HAD:

Haloacid dehalogenase

MALDI-TOF/TOF:

Matrix-assisted laser desorption/ionization-time-of-flight

Mw:

Molecular weight

FCP/SCP:

[TFIIF(transcription initiation factor IIF)-associating component of CTD (C-terminal domain) phosphatase/small CTD phosphatase]

WT:

Wild type

References

  1. Razin S, Yogev D, Naot Y (1998) Microbiol Mol Biol Rev 62:1094–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Citti C, Blanchard A (2013) Trends Microbiol 21:196–203

    Article  CAS  PubMed  Google Scholar 

  3. Jeffery N, Gasser RB, Steer PA, Noormohammadi AH (2007) Microbiology 153:2679–2688

    Article  CAS  PubMed  Google Scholar 

  4. Dusanic D, Bencina D, Oven I, Cizelj I, Bencina M, Narat M (2012) Vet Res 43:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. May M, Brown DR (2009) J Bacteriol 191:3588–3593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Koul A, Choidas A, Treder M, Tyagi AK, Drlica K, Singh Y, Ullrich A (2000) J Bacteriol 182:5425–5432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Schmidl SR, Gronau K, Pietack N, Hecker M, Becher D, Stülke J (2010) Mol Cell Proteomics 9:1228–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Vasconcelos ATR, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO, Pinto PM, Almeida DF, Almeida LGP, Almeida R, Alves-Filho L, Assunção EN, Azevedo VAC, Bogo MR, Brigido MM, Brocchi M, Burity HA, Camargo AA, Camargo SS, Carepo MS, Carraro DM, de Mattos Cascardo JC, Castro LA, Cavalcanti G, Chemale G, Collevatti RG, Cunha CW, Dallagiovanna B, Dambrós BP, Dellagostin OA, Falcão C, Fantinatti-Garboggini F, Felipe MSS, Fiorentin L, Franco GR, Freitas NSA, Frías D, Grangeiro TB, Grisard EC, Guimarães CT, Hungria M, Jardim SN, Krieger MA, Laurino JP, Lima LFA, Lopes MI, Loreto ÉLS, Madeira HMF, Manfio GP, Maranhão AQ, Martinkovics CT, Medeiros SRB, Moreira MAM, Neiva M, Ramalho-Neto CE, Nicolás MF, Oliveira SC, Paixão RFC, Pedrosa FO, Pena SDJ, Pereira M, Pereira-Ferrari L, Piffer I, Pinto LS, Potrich DP, Salim ACM, Santos FR, Schmitt R, Schneider MPC, Schrank A, Schrank IS, Schuck AF, Seuanez HN, Silva DW, Silva R, Silva SC, Soares CMA, Souza KRL, Souza RC, Staats CC, Steffens MBR, Teixeira SMR, Urmenyi TP, Vainstein MH, Zuccherato LW, Simpson AJG, Zaha A (2005) J Bacteriol 187:5568–5577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Shi Y (2009) Cell 139:468–484

    Article  CAS  PubMed  Google Scholar 

  10. Moorhead GBG, De wever V, Templeton G, Kerk D (2009) Biochem J 417:401–409

    Article  CAS  PubMed  Google Scholar 

  11. Brautigan DL (2013) FEBS J 280:324–325

    Article  CAS  PubMed  Google Scholar 

  12. Das AK, Helps NR, Cohen PT, Barford D (1996) EMBO J 15:6798–6809

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Wehenkel A, Bellinzoni M, Schaeffer F, Villarino A, Alzari PM (2007) J Mol Biol 374:890–898

    Article  CAS  PubMed  Google Scholar 

  14. Schlicker C, Fokina O, Kloft N, Grüne T, Becker S, Sheldrick GM, Forchhammer K (2008) J Mol Biol 376:570–581

    Article  CAS  PubMed  Google Scholar 

  15. Pullen KE, Ng H-L, Sung P-Y, Good MC, Smith SM, Alber T (2004) Structure 12:1947–1954

    Article  CAS  PubMed  Google Scholar 

  16. Bellinzoni M, Wehenkel A, Shepard W, Alzari PM (2007) Structure 15:863–872

    Article  CAS  PubMed  Google Scholar 

  17. Rantanen MK, Lehtiö L, Rajagopal L, Rubens CE, Goldman A (2007) FEBS J 274:3128–3137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tanoue K, Miller Jenkins LM, Durell SR, Debnath S, Sakai H, Tagad HD, Ishida K, Appella E, Mazur SJ (2013) Biochemistry 52:5830–5843

    Article  CAS  PubMed  Google Scholar 

  19. Su J, Forchhammer K (2013) FEBS J 280:694–707

    Article  CAS  PubMed  Google Scholar 

  20. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK (2005) FEBS J 272:5101–5109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  23. Hasegawa H, Holm L (2009) Curr Opin Struct Biol 19:341–348

    Article  CAS  PubMed  Google Scholar 

  24. Krissinel E, Henrick K (2004) Acta Crystallogr Sect D Biol Crystallogr 60:2256–2268

    Article  CAS  Google Scholar 

  25. DeLano WL (2002) The pymol molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  26. Menegatti ACO, Tavares CP, Vernal J, Klein CS, Huergo L, Terenzi H (2010) Vet Microbiol 145:134–141

    Article  CAS  PubMed  Google Scholar 

  27. Fathi A-R, Krautheim A, Lucke S, Becker K, Juergen Steinfelder H (2002) Anal Biochem 310:208–214

    Article  CAS  PubMed  Google Scholar 

  28. Whitmore L, Wallace BA (2008) Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  29. Obuchowski M, Madec E, Delattre D, Boël G, Iwanicki A, Foulger D, Séror SJ (2000) J Bacteriol 182:5634–5638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bork P, Brown NP, Hegyi H, Schultz J (1996) Protein Sci 5:1421–1425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ariño J, Casamayor A, González A (2011) Eukaryot Cell 10:21–33

    Article  PubMed Central  PubMed  Google Scholar 

  32. Fjeld CC, Denu JM (1999) J Biol Chem 274:20336–20343

    Article  CAS  PubMed  Google Scholar 

  33. Halbedel S, Busse J, Schmidl SR, Stülke J (2006) J Biol Chem 281:26253–26259

    Article  CAS  PubMed  Google Scholar 

  34. Su J, Schlicker C, Forchhammer K (2011) J Biol Chem 286:13481–13488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lai SM, Moual HL (2005) Microbiology 151:1159–1167

    Article  CAS  PubMed  Google Scholar 

  36. Bodart J-F, Béchard D, Bertout M, Rousseau A, Gannon J, Vilain J-P, Flament S (1999) FEBS Lett 457:175–178

    Article  CAS  PubMed  Google Scholar 

  37. Matiollo C, Ecco G, Menegatti ACO, Razzera G, Vernal J, Terenzi H (2013) Biochim Biophys Acta 1834:191–196

    Article  CAS  PubMed  Google Scholar 

  38. Chi M-C, Wu T-J, Chuang T-T, Chen H-L, Lo H-F, Lin L-L (2010) Protein J 29:572–582

    Article  CAS  PubMed  Google Scholar 

  39. Geoghegan KF, Dixon HBF, Rosner PJ, Hoth LR, Lanzetti AJ, Borzilleri KA, Marr ES, Pezzullo LH, Martin LB, LeMotte PK, McColl AS, Kamath AV, Stroh JG (1999) Anal Biochem 267:169–184

    Article  CAS  PubMed  Google Scholar 

  40. Perozzo R, Folkers G, Scapozza L (2004) J Recept Signal Transduct 24:1–52

    Article  CAS  Google Scholar 

  41. Burnside K, Rajagopal L (2011) Future Microbiol 6:747–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Agarwal S, Agarwal S, Jin H, Pancholi P, Pancholi V (2012) J Biol Chem 287:9147–9167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhang W, Shi L (2004) Microbiology 150:4189–4197

    Article  CAS  PubMed  Google Scholar 

  44. Dupeux F, Antoni R, Betz K, Santiago J, Gonzalez-Guzman M, Rodriguez L, Rubio S, Park S-Y, Cutler SR, Rodriguez PL, Márquez JA (2011) Plant Physiol 156:106–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009) Nature 462:602–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Science 335:85–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Jackson MD, Fjeld CC, Denu JM (2003) Biochemistry 42:8513–8521

    Article  CAS  PubMed  Google Scholar 

  48. Martinez MA, Das K, Saikolappan S, Materon LA, Dhandayuthapani S (2013) BMC Microbiol 13:44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa Científica de Tecnológica do Estado de Santa Catarina (FAPESC), Financiadora de Estudos e Projetos (FINEP), and Instituto Nacional de Biologia Estrutural e Bioimagem (INBEB). We acknowledge the technical staff of CEBIME for assistance. We thank Maria Lucia Bianconi (UFRJ), Douglas Norberto, and Leonardo Rosado for helpful discussions about ITC data, and Catia Silene Klein for the M. synoviae strain 53 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Terenzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menegatti, A.C.O., Vernal, J. & Terenzi, H. The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence. J Biol Inorg Chem 20, 61–75 (2015). https://doi.org/10.1007/s00775-014-1209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1209-3

Keywords

Navigation