Skip to main content
Log in

In silico assessment of S100A12 monomer and dimer structural dynamics: implications for the understanding of its metal-induced conformational changes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Changes in the concentration of different ions modulate several cellular processes, such as Ca2+ and Zn2+ in inflammation. Upon activation of immune system effector cells, the intracellular Ca2+ concentration rises propagating the activation signal, leading to degranulation and generation of reactive oxygen species, which increases the Zn2+ intracellular concentration as a consequence of the cellular antioxidant machinery. In this context, S100A12 is of special interest because it is a pro-inflammatory protein expressed in neutrophils whose structure and function are modulated by both Ca2+ and Zn2+. The current hypothesis about its mechanism of action was built based on biochemical and crystallographic data. However, there are missing connections between molecular structure and the way in which many events are concatenated at the triggering and along the inflammatory process. In this work we use molecular dynamics simulations to describe how variations in Zn2+ and Ca2+ concentrations modulate the structural dynamics of the calcium-free S100A12 dimer and monomer, which was not considered a part of the mechanism of action before. Our results suggest that (i) Zn2+ have a determinant role in the dimerization step, as well as in the unbinding of the Na+ complexed to the N-terminal EF-hand; (ii) the N-terminal EF-hand domain is the first to bind Ca2+, and not the C-terminal, as usually accepted; and that (iii) Ca2+ modulates the structural dynamics of H-III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reyes-Caballero H, Campanello GC, Giedroc DP (2011) Biophys Chem 156:103–114

    Article  PubMed  CAS  Google Scholar 

  2. Giedroc DP, Arunkumar AI (2007) Dalton Trans 29:3107–3120

    Article  PubMed  Google Scholar 

  3. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Nature 460:823–830

    Article  PubMed  CAS  Google Scholar 

  4. Degrève L, Fuzo CA, Caliri A (2012) J Comput Aided Mol Des 26:1311–1325

    Article  PubMed  PubMed Central  Google Scholar 

  5. Empadinhas N, da Costa M (2008) Int Microbiol 11:151–161

    PubMed  CAS  Google Scholar 

  6. Kolaczkowska E, Kubes P (2013) Nat Rev Immunol 13:159–175

    Article  PubMed  CAS  Google Scholar 

  7. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Annu Rev Immunol 30:459–489

    Article  PubMed  CAS  Google Scholar 

  8. Burgos RA, Conejeros I, Hidalgo MA, Werling D, Hermosilla C (2011) Vet Immunol Immunopathol 143:1–10

    Article  PubMed  CAS  Google Scholar 

  9. Bréchard S, Tschirhart EJ (2008) J Leukoc Biol 84:1223–1237

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prasad AS (2008) Mol Med 14:353–357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Maret W, Krężel A (2007) Mol Med 13:371–375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Maret W (2009) Biometals 22:149–157

    Article  PubMed  CAS  Google Scholar 

  13. Eide DJ (2011) Metallomics 3:1124–1129

    Article  PubMed  CAS  Google Scholar 

  14. Moroz OV, Burkitt W, Wittkowski H, He W, Ianoul A, Novitskaya V, Xie J, Polyakova O, Lednev IK, Shekhtman A, Derrick PJ, Bjoerk P, Foell D, Bronstein IB (2009) BMC Biochem 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yan WX, Armishaw C, Goyette J, Yang Z, Cai H, Alewood P, Geczy CL (2008) J Biol Chem 283:13035–13043

    Article  PubMed  CAS  Google Scholar 

  16. Yang Z, Yan WX, Cai H, Tedla N, Armishaw C, Di Girolamo N, Wang HW, Hampartzoumian T, Simpson JL, Gibson PG, Hunt J, Hart P, Hughes JM, Perry MA, Alewood PF, Geczy CL (2007) J Allergy Clin Immunol 119:106–114

    Article  PubMed  CAS  Google Scholar 

  17. Boussac M, Garin J (2000) Electrophoresis 21:665–672

    Article  PubMed  CAS  Google Scholar 

  18. Donato R (2001) Int J Biochem Cell Biol 33:637–668

    Article  PubMed  CAS  Google Scholar 

  19. Pietzsch J, Hoppmann S (2009) Amino Acids 36:381–389

    Article  PubMed  CAS  Google Scholar 

  20. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) Cell 97:889–901

    Article  PubMed  CAS  Google Scholar 

  21. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT (2009) J Transl Med 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM (2013) Cell Signal 25:2185–2197

    Article  PubMed  CAS  Google Scholar 

  23. Foell D, Frosch M, Sorg C, Roth J (2004) Clin Chim Acta 344:37–51

    Article  PubMed  CAS  Google Scholar 

  24. Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, Weigand MA (2008) Crit Care 12:201

    Article  PubMed  PubMed Central  Google Scholar 

  25. Creagh-Brown BC, Quinlan GJ, Evans TW, Burke-Gaffney A (2010) Intensive Care Med 36:1644–1656

    Article  PubMed  CAS  Google Scholar 

  26. Marinakis E, Bagkos G, Piperi C, Roussou P, Diamanti-Kandarakis E (2014) Clin Chem Lab Med 52:189–200

    Article  PubMed  CAS  Google Scholar 

  27. Moroz OV, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB (2003) Microsc Res Tech 60:581–592

    Article  PubMed  CAS  Google Scholar 

  28. Gifford J, Walsh M, Vogel H (2007) Biochem J 405:199–221

    Article  PubMed  CAS  Google Scholar 

  29. Chazin WJ (2011) Acc Chem Res 44:171–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Smith SP, Shaw GS (1998) Biochem Cell Biol 76:324–333

    Article  PubMed  CAS  Google Scholar 

  31. Capozzi F, Casadei F, Luchinat C (2006) J Biol Inorg Chem 11:949–962

    Article  PubMed  CAS  Google Scholar 

  32. Moroz OV, Antson AA, Murshudov GN, Maitland NJ, Dodson G, Wilson KS, Skibshøj I, Lukanidin EM, Bronstein IB (2001) Acta Crystallogr Sect D 57:20–29

    Article  CAS  Google Scholar 

  33. Moroz OV, Antson AA, Dodson EJ, Burrell HJ, Grist SJ, Lloyd RM, Maitland NJ, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB (2002) Acta Crystallogr Sect D 58:407–413

    Article  CAS  Google Scholar 

  34. Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB (2009) J Mol Biol 391:536–551

    Article  PubMed  CAS  Google Scholar 

  35. Dror RO, Jensen MØ, Borhani DW, Shaw DE (2010) J Gen Physiol 135:555–562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Streicher WW, Lopez MM, Makhatadze GI (2010) Biophys Chem 151:181–186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Vogl T, Pröpper C, Hartmann M, Strey A, Strupat K, van den Bos C, Sorg C, Roth J (1999) J Biol Chem 274:25291–25296

    Article  PubMed  CAS  Google Scholar 

  38. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van Der Spoel D, Hess B, Lindahl E (2013) Bioinformatics 29:845–854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) J Comput Chem 26:1701–1718

    Article  Google Scholar 

  40. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  41. Berendsen HJ, Postma JPM, Van Gunsteren WF, Hermans J (1981) In: Intermolecular forces. Springer Netherlands, pp 331–342

  42. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  43. Nosé S (1984) Mol Phys 52:255–268

    Article  Google Scholar 

  44. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  PubMed  Google Scholar 

  45. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  46. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  47. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Frishman D, Argos P (1995) Proteins Struct Funct Bioinform 23:566–579

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Brazilian research funding agencies FAPESP (Grant 2010/01538-6), CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Almeida Garcia Reis.

Additional information

R. A. G. Reis and L. O. Bortot contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, R.A.G., Bortot, L.O. & Caliri, A. In silico assessment of S100A12 monomer and dimer structural dynamics: implications for the understanding of its metal-induced conformational changes. J Biol Inorg Chem 19, 1113–1120 (2014). https://doi.org/10.1007/s00775-014-1149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1149-y

Keywords

Navigation