Skip to main content
Log in

Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The Helix pomatia metallothionein (MT) system, namely, its two highly specific forms, HpCdMT and HpCuMT, has offered once again an optimum model to study metal–protein specificity. The present work investigates the most unexplored aspect of the coordination behavior of MT polypeptides with respect to either cognate or noncognate metal ions, as opposed to the standard studies of cognate metal ion coordination. To this end, we analyzed the in vivo synthesis of the corresponding complexes with their noncognate metals, and we performed a detailed spectroscopic and spectrometric study of the Zn2+/Cd2+ and Zn2+/Cu+ in vitro replacement reactions on the initial Zn-HpMT species. An HpCuMTAla site-directed mutant, exhibiting differential Cu+-binding abilities in vivo, was also included in this study. We demonstrate that when an MT binds its cognate metal, it yields well-folded complexes of limited stoichiometry, representative of minimal-energy conformations. In contrast, the incorporation of noncognate metal ions is better attributed to an unspecific reaction of cysteinic thiolate groups with metal ions, which is dependent on their concentration in the surrounding milieu, where no minimal-energy structure is reached, and otherwise, the MT peptide acts as a multidentate ligand that will bind metal ions until its capacity has been saturated. Additionally, we suggest that previous binding of an MT polypeptide with its noncognate metal ion (e.g., binding of Zn2+ to the HpCuMT isoform) may preclude the correct folding of the complex with its cognate metal ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Capdevila M, Bofill R, Palacios O, Atrian S (2012) Coord Chem Rev 256:46–52

    Article  CAS  Google Scholar 

  2. Palacios O, Atrian S, Capdevila M (2011) J Biol Inorg Chem 16:991–1009

    Article  CAS  PubMed  Google Scholar 

  3. Capdevila M, Atrian S (2011) J Biol Inorg Chem 16:977–989

    Article  CAS  PubMed  Google Scholar 

  4. Dallinger R, Berger B, Hunziker PE, Kägi JHR (1997) Nature 388:237–238

    Article  CAS  PubMed  Google Scholar 

  5. Palacios O, Pagani A, Pérez-Rafael S, Egg M, Höckner M, Brandstätter A, Capdevila M, Atrian S, Dallinger R (2011) BMC Biol 9:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chabicovsky M, Klepal W, Dallinger R (2004) Environ Toxicol Chem 23:648–655

    Article  CAS  PubMed  Google Scholar 

  7. Chabicovsky M, Niederstaetter H, Thaler R, Hödl E, Parson W, Rossmanith W, Dallinger R (2003) Toxicol Appl Pharmacol 190:25–36

    Article  CAS  PubMed  Google Scholar 

  8. Dallinger R, Chabicovsky M, Hödl E, Prem C, Hunziker P, Manzl C (2005) Am J Physiol 289:R1185–R1195

    CAS  Google Scholar 

  9. Höckner M, Stefanon K, DeVaufleury A, Monteiro F, Perez-Rafael S, Palacios O, Capdevila M, Atrian S, Dallinger R (2011) Biometals 24:1079–1092

    Article  PubMed  Google Scholar 

  10. Pérez-Rafael S, Pagani A, Palacios O, Dallinger R, Capdevila M, Atrian S (2013) Z Anorg Allg Chem 639:1356–1360

    Article  Google Scholar 

  11. Bongers J, Walton CD, Richardson DE, Bell JU (1988) Anal Chem 60:2683–2686

    Article  CAS  PubMed  Google Scholar 

  12. Capdevila M, Domènech J, Pagani A, Tío L, Villarreal L, Atrian S (2005) Angew Chem Int Ed 44:4618–4622

    Article  CAS  Google Scholar 

  13. Capdevila M, Cols N, Romero-Isart N, Gonzalez-Duarte R, Atrian S, Gonzalez-Duarte P (1997) Cell Mol Life Sci 53:681–688

    Article  CAS  PubMed  Google Scholar 

  14. Bofill R, Palacios O, Capdevila M, Cols N, Gonzalez-Duarte R, Atrian S, Gonzalez-Duarte P (1999) J Inorg Biochem 73:57–64

    Article  CAS  PubMed  Google Scholar 

  15. Domenech J, Orihuela R, Mir G, Molinas M, Atrian S, Capdevila M (2007) J Biol Inorg Chem 12:867–882

    Article  CAS  PubMed  Google Scholar 

  16. Fabris D, Zaia J, Hathout Y, Fenselau C (1996) J Am Chem Soc 118:12242–12243

    Article  CAS  Google Scholar 

  17. Bofill R, Capdevila M, Atrian S (2009) Metallomics 1:229–234

    Article  CAS  PubMed  Google Scholar 

  18. Dallinger R, Wang Y, Berger B, Mackay EA, Kägi JHR (2001) Eur J Biochem 268:4126–4133

    Article  CAS  PubMed  Google Scholar 

  19. Orihuela R, Monteiro F, Pagani A, Capdevila M, Atrian S (2010) Chem Eur J 16:12363–12372

    Article  CAS  PubMed  Google Scholar 

  20. Cols N, Romero-Isart N, Capdevila M, Oliva B, Gonzàlez-Duarte P, Gonzàlez-Duarte R, Atrian S (1997) J Inorg Biochem 68:157–166

    Article  CAS  PubMed  Google Scholar 

  21. Polec-Pawlac K, Palacios O, Capdevila M, Gonzalez-Duarte P, Lobinski R (2002) Talanta 57:1011–1017

    Article  Google Scholar 

  22. Orihuela R, Domènech J, Bofill R, You C, Mackay EA, Kägi JHR, Capdevila M, Atrian S (2008) J Biol Inorg Chem 13:801–812

    Article  CAS  PubMed  Google Scholar 

  23. Pagani A, Villarreal L, Capdevila M, Atrian S (2007) Mol Microbiol 63:256–269

    Article  CAS  PubMed  Google Scholar 

  24. Gehrig PM, You C, Dallinger R, Gruber C, Brouwer M, Kägi JHR, Hunziker PE (2000) Protein Sci 9:395–402

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Ding C, Festa RA, Chen YL, Espart A, Palacios O, Espin J, Capdevila M, Atrian S, Heitman J, Thiele D (2013) Cell Host Microbe 13:265–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pérez-Rafael S, Mezger A, Lieb B, Dallinger R, Capdevila M, Palacios O, Atrian S (2012) J Inorg Biochem 108:84–90

    Article  PubMed  Google Scholar 

  27. Pérez-Rafael S, Kurz A, Guirola M, Capdevila M, Palacios O, Atrian S (2012) Metallomics 4:342–349

    Article  PubMed  Google Scholar 

  28. Bofill R, Capdevila M, Cols N, Atrian S, Gonzàlez-Duarte P (2001) J Biol Inorg Chem 6:405–417

    Article  CAS  PubMed  Google Scholar 

  29. Artells E, Palacios O, Capdevila M, Atrian S (2013) Metallomics 5:1397–1410

    Article  CAS  PubMed  Google Scholar 

  30. Bofill R, Orihuela R, Romagosa M, Domenech J, Atrian S, Capdevila M (2009) FEBS J 276:7040–7056

    Article  CAS  PubMed  Google Scholar 

  31. Valls M, Bofill R, Romero-Isart N, Gonzalez-Duarte R, Abian J, Carrascal M, Gonzalez-Duarte P, Atrian S (2000) FEBS Lett 533:189–194

    Article  Google Scholar 

  32. Palacios O, Espart A, Espin J, Ding C, Thiele D, Atrian S, Capdevila M (2014) Metallomics. doi:10.1039/C3MT00266G

    PubMed  Google Scholar 

  33. Capdevila M, Palacios O, Atrian S (2010) Bioinorg Chem Appl. doi:10.1155/2010/541829

    PubMed Central  PubMed  Google Scholar 

  34. Zamyatin AA (1972) Prog Biophys Mol Biol 24:107–123

    Article  Google Scholar 

  35. Hasler DW, Jensen LT, Zerbe O, Winge DR, Vasak M (2000) Biochemistry 39:14567–14575

    Article  CAS  PubMed  Google Scholar 

  36. Muñoz A, Forsterling FH, Shaw CF III, Petering DH (2002) J Biol Inorg Chem 7:713–724

    Article  PubMed  Google Scholar 

  37. Narula S, Brouwer M, Hua Y, Armitage IM (1995) Biochemistry 34:620–631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministerio de Economía y Competitividad, (grants BIO2012-39682-C02-01 and BIO2012-39682-C02-02 to S.A. and M.C., respectively; these grants were partially supported by FEDER funding) and by the Austrian Science Foundation (grant P 23635-B20) to R.D. The authors from Barcelona are members of the 2009SGR-1457 Grup de Recerca de la Generalitat de Catalunya. The Spanish and Austrian groups were also financed by Acciones Integradas grants HU2006-0027 (Spain) and ES 02/2007 (Austria). S.P.R. received a predoctoral fellowship from the Departament de Química, Universitat Autònoma de Barcelona. We thank the Centres Científics i Tecnològics de la Universitat de Barcelona (ICP-AES, DNA sequencing) and the Servei d’Anàlisi Química de la Universitat Autònoma de Barcelona (CD spectroscopy, UV–vis spectroscopy, ESI-MS) for allocating instrument time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercè Capdevila.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, Ò., Pérez-Rafael, S., Pagani, A. et al. Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model. J Biol Inorg Chem 19, 923–935 (2014). https://doi.org/10.1007/s00775-014-1127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1127-4

Keywords

Navigation