Skip to main content
Log in

Regioselectivity of substrate hydroxylation versus halogenation by a nonheme iron(IV)–oxo complex: possibility of rearrangement pathways

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Several nonheme iron enzymes and biomimetic model complexes catalyze a substrate halogenation reaction. Recent computational studies (Borowski et al. J Am Chem Soc 132:12887–12898, 2010) on α-ketoglutarate dependent halogenase proposed an initial isomerization reaction that is important to give halogenated products. We present here a series of density functional theory calculations on a biomimetic model complex—[FeIV(O)(TPA)Cl]+, where TPA is tris(2-pyridylmethyl)amine—and investigate the mechanisms of substrate halogenation versus hydroxylation using the reactant and its isomer where the oxo and chloro groups have changed positions. We show here that the reactions occur on a dominant quintet spin state surface, although the reactants are in a triplet state. Despite the fact that the reactants can exist in two stable isomers with the oxo group either trans or cis to the axial ligand, they react differently with substrates, where one gives dominant hydroxylation and the other gives dominant chlorination of substrates. The ligand in the cis position of the oxo group is found to be active in the reaction mechanism and donated to the substrate during the reaction. A detailed thermochemical analysis of possible reaction mechanisms reveals that the strengths of the Fe–OH and Fe–Cl bonds in the radical intermediates are the key reasons for this regioselectivity switch of hydroxylation over halogenation. This study highlights the differences between enzymatic and biomimetic halogenases, where the former only react after an essential isomerization step, which is not necessary in model complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Gribble GW (1998) Acc Chem Res 31:141–152

    Article  CAS  Google Scholar 

  2. Butler A, Sandy M (2009) Nature 460:848–854

    Article  PubMed  CAS  Google Scholar 

  3. Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT (2006) Chem Rev 106:3364–3378

    Article  PubMed  CAS  Google Scholar 

  4. Grgurina I, Barca A, Cervigni S, Gallo M, Scaloni A, Pucci P (1994) Experientia 50:130–133

    Article  PubMed  CAS  Google Scholar 

  5. Harris CM, Kannan R, Kopecka H, Harris TM (1985) J Am Chem Soc 107:6652–6658

    Article  CAS  Google Scholar 

  6. Neumann CS, Galonić Fujimori D, Walsh CT (2008) Chem Biol 15:99–109

    Article  PubMed  CAS  Google Scholar 

  7. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–349

    Article  PubMed  CAS  Google Scholar 

  8. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  PubMed  CAS  Google Scholar 

  9. Blasiak LC, Drennan CL (2009) Acc Chem Res 42:147–155

    Article  PubMed  CAS  Google Scholar 

  10. de Visser SP, Kumar D (eds) (2011) Iron-containing enzymes: versatile catalysts of hydroxylation reactions in nature. RSC Publishing, Cambridge

    Google Scholar 

  11. Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL (2006) Nature 440:368–371

    Article  PubMed  CAS  Google Scholar 

  12. Wong C, Galonić Fujimori D, Walsh CT, Drennan CL (2009) J Am Chem Soc 131:4872–4879

    Article  PubMed  CAS  Google Scholar 

  13. Khare D, Wang B, Gu L, Razelun J, Sherman DH, Gerwick WH, Håkansson K, Smith JL (2010) Proc Natl Acad Sci USA 32:14099–14104

    Article  Google Scholar 

  14. Galonić Fujimori D, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Nat Chem Biol 3:113–116

    Article  Google Scholar 

  15. Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM Jr (2009) Biochemistry 48:4331–4343

    Article  PubMed  CAS  Google Scholar 

  16. Matthews ML, Neumann CS, Miles LA, Grove TL, Booker SJ, Krebs C, Walsh CT, Bollinger JM Jr (2009) Proc Natl Acad Sci USA 106:17723–17728

    Article  PubMed  CAS  Google Scholar 

  17. de Visser SP, Latifi R (2009) J Phys Chem B 113:12–14

    Article  PubMed  Google Scholar 

  18. Pandian S, Vincent MA, Hillier IA, Burton NA (2009) Dalton Trans 6201–6207

  19. Borowski T, Noack H, Radoń M, Zych K, Siegbahn PEM (2010) J Am Chem Soc 132:12887–12898

    Article  PubMed  CAS  Google Scholar 

  20. Kojima T, Leising RA, Yan S, Que L Jr (1993) J Am Chem Soc 115:11328–11335

    Article  CAS  Google Scholar 

  21. Podgoršek A, Zupan M, Iskra J (2009) Angew Chem Int Ed 48:8424–8450

    Article  Google Scholar 

  22. Comba P, Wunderlich S (2010) Chem Eur J 16:7293–7299

    PubMed  CAS  Google Scholar 

  23. Liu W, Groves JT (2010) J Am Chem Soc 132:12847–12849

    Article  PubMed  CAS  Google Scholar 

  24. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L Jr (2003) Science 299:1037–1039

    Article  PubMed  CAS  Google Scholar 

  25. Rohde J-U, Stubna A, Bominaar EL, Münck E, Nam W, Que L Jr (2006) Inorg Chem 45:6435–6445

    Article  PubMed  CAS  Google Scholar 

  26. Sastri CV, Lee J, Oh K, Lee YJ, Lee J, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA, Kim J, Que L Jr, Shaik S, Nam W (2007) Proc Natl Acad Sci USA 104:19181–19186

    Article  PubMed  CAS  Google Scholar 

  27. Company A, Feng Y, Güell M, Ribas X, Luis JM, Que L Jr, Costas M (2009) Chem Eur J 15:3359–3362

    Article  PubMed  CAS  Google Scholar 

  28. Makhlynets OV, Das P, Taktak S, Flook M, Mas-Ballesté R, Rybak-Akimova EV, Que L Jr (2009) Chem Eur J 15:13171–13180

    Article  PubMed  CAS  Google Scholar 

  29. Lyakin OY, Bryliakov KP, Britovsek GJP, Talsi EP (2009) J Am Chem Soc 131:10798–10799

    Article  PubMed  CAS  Google Scholar 

  30. Paine TK, Paria S, Que L Jr (2010) Chem Commun 46:1830–1832

    Article  CAS  Google Scholar 

  31. Das P, Que L Jr (2010) Inorg Chem 49:9479–9485

    Article  PubMed  CAS  Google Scholar 

  32. Lyakin OY, Bryliakov KP, Talsi EP (2011) Inorg Chem 50:5526–5538

    Article  PubMed  CAS  Google Scholar 

  33. Noack H, Siegbahn PEM (2007) J Biol Inorg Chem 12:1151–1162

    Article  PubMed  CAS  Google Scholar 

  34. Frisch MJ et al (2004) Gaussian 03, revision C.02. Gaussian, Wallingford

  35. Aluri S, de Visser SP (2007) J Am Chem Soc 129:14846–14847

    Article  PubMed  CAS  Google Scholar 

  36. Kumar D, Karamzadeh B, Sastry GN, de Visser SP (2010) J Am Chem Soc 132:7656–7667

    Article  PubMed  CAS  Google Scholar 

  37. Kumar D, Thiel W, de Visser SP (2011) J Am Chem Soc 133:3869–3882

    Article  PubMed  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  41. Kumar D, de Visser SP, Shaik S (2005) Chem Eur J 11:2825–2835

    Article  PubMed  CAS  Google Scholar 

  42. de Visser SP, Oh K, Han A-R, Nam W (2007) Inorg Chem 46:4632–4641

    Article  PubMed  Google Scholar 

  43. Vardhaman AK, Sastri CV, Kumar D, de Visser SP (2011) Chem Commun 47:11044–11047

    Article  CAS  Google Scholar 

  44. Karamzadeh B, Kumar D, Sastry GN, de Visser SP (2010) J Phys Chem A 114:13234–13243

    Article  PubMed  CAS  Google Scholar 

  45. Hirao H, Kumar D, Que L Jr, Shaik S (2006) J Am Chem Soc 128:8590–8606

    Article  PubMed  CAS  Google Scholar 

  46. de Visser SP (2006) J Am Chem Soc 128:9813–9824

    Article  PubMed  Google Scholar 

  47. de Visser SP (2006) J Am Chem Soc 128:15809–15818

    Article  PubMed  Google Scholar 

  48. Latifi R, Bagherzadeh M, de Visser SP (2009) Chem Eur J 15:6651–6662

    Article  PubMed  CAS  Google Scholar 

  49. Seo MS, Kim NH, Cho K-B, So JE, Park SK, Clémancey M, Garcia-Serres R, Latour J-M, Shaik S, Nam W (2011) Chem Sci 2:1039–1045

    Article  CAS  Google Scholar 

  50. Ye S, Neese F (2011) Proc Natl Acad Sci USA 108:1228–1233

    Article  PubMed  CAS  Google Scholar 

  51. de Visser SP, Nam W (2008) J Phys Chem A 112:12887–12895

    Article  PubMed  Google Scholar 

  52. Cheng L, Wang J, Wang M, Wu Z (2010) Phys Chem Chem Phys 12:4092–4103

    Article  PubMed  CAS  Google Scholar 

  53. de Visser SP, Shaik S, Sharma PK, Kumar D, Thiel W (2003) J Am Chem Soc 125:15779–15788

    Article  PubMed  Google Scholar 

  54. de Visser SP (2006) Chem Eur J 12:8168–8177

    Article  PubMed  Google Scholar 

  55. Green MT (1999) J Am Chem Soc 121:7939–7940

    Article  CAS  Google Scholar 

  56. de Visser SP, Latifi R, Tahsini L, Nam W (2011) Chem Asian J 6:493–504

    Article  PubMed  Google Scholar 

  57. de Visser SP, Kumar D, Cohen S, Shacham R, Shaik S (2004) J Am Chem Soc 126:8362–8363

    Article  PubMed  Google Scholar 

  58. Shaik S, Kumar D, de Visser SP (2008) J Am Chem Soc 130:10128–10140

    Article  PubMed  CAS  Google Scholar 

  59. de Visser SP (2010) J Am Chem Soc 132:1087–1097

    Article  PubMed  Google Scholar 

  60. de Visser SP, Tahsini L, Nam W (2009) Chem Eur J 15:5577–5587

    Article  PubMed  Google Scholar 

  61. Kumar D, de Visser SP, Shaik S (2003) J Am Chem Soc 125:13024–13025

    Article  PubMed  CAS  Google Scholar 

  62. Kumar D, de Visser SP, Sharma PK, Cohen S, Shaik S (2004) J Am Chem Soc 126:1907–1920

    Article  PubMed  CAS  Google Scholar 

  63. Kumar D, de Visser SP, Shaik S (2004) J Am Chem Soc 126:5072–5073

    Article  PubMed  CAS  Google Scholar 

  64. Kumar D, Sastry GN, de Visser SP (2011) Chem Eur J 17:6196–6205

    Article  PubMed  CAS  Google Scholar 

  65. Latifi R, Tahsini L, Kumar D, Sastry GN, Nam W, de Visser SP (2011) Chem Commun 47:10674–10676

    Article  CAS  Google Scholar 

  66. de Visser SP, Ogliaro F, Shaik S (2001) Angew Chem Int Ed 40:2871–2874

    Article  Google Scholar 

  67. Shaik S, Cohen S, de Visser SP, Sharma PK, Kumar D, Kozuch S, Ogliaro F, Danovich D (2004) Eur J Inorg Chem: 207–226

  68. Bordwell FG, Cheng J-P (1991) J Am Chem Soc 113:1736–1743

    Article  CAS  Google Scholar 

  69. Mayer JM (1998) Acc Chem Res 31:441–450

    Article  CAS  Google Scholar 

  70. Prokop KA, de Visser SP, Goldberg DP (2010) Angew Chem Int Ed 49:5091–5095

    Article  CAS  Google Scholar 

  71. Prokop KA, Neu HM, de Visser SP, Goldberg DP (2011) J Am Chem Soc 133:15874–15877

    Article  PubMed  CAS  Google Scholar 

  72. de Visser SP (2012) Adv Inorg Chem 64:1–31

    Article  Google Scholar 

Download references

Acknowledgments

M.G.Q. thanks the BBSRC for a studentship. The National Service for Computational Chemistry Software is acknowledged for generous CPU time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam P. de Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 751 kb)

Detailed energies, group spin densities, and charges as well as structural information for all local minima and transition states described in this work are available.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quesne, M.G., de Visser, S.P. Regioselectivity of substrate hydroxylation versus halogenation by a nonheme iron(IV)–oxo complex: possibility of rearrangement pathways. J Biol Inorg Chem 17, 841–852 (2012). https://doi.org/10.1007/s00775-012-0901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0901-4

Keywords

Navigation