Skip to main content
Log in

Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein “small tetraheme c” replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5–1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 °C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-Å-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ccNiR:

Cytochrome c nitrite reductase

CCP4:

Collaborative Computational Project Number 4

HAO:

Hydroxylamine oxidoreductase

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

MV:

Methyl viologen

MVred :

Methyl viologen monocation radical

OTTLE:

Optically transparent thin-layer electrode

PFV:

Protein film voltammetry

SHE:

Standard hydrogen electrode

STC:

Small tetraheme c

SVD:

Singular value decomposition

References

  1. Schmidt I, Steenbakkers PJM, Op den Camp HJM, Schmidt K, Jetten MSM (2004) J Bacteriol 186:2781–2788. doi:10.1128/Jb.186.9.2781-2788.2004

    Article  CAS  PubMed  Google Scholar 

  2. Ehrlich HL (2002) Geomicrobiology. Marcel Dekker, New York

    Book  Google Scholar 

  3. Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PMH (1999) Nature 400:476–480

    Article  CAS  PubMed  Google Scholar 

  4. Einsle O, Stach P, Messerschmidt A, Simon J, Kroger A, Huber R, Kroneck PMH (2000) J Biol Chem 275:39608–39616

    Article  CAS  PubMed  Google Scholar 

  5. Pereira I, LeGall J, Xavier A, Teixeira M (2000) Biochim Biophys Acta 1481:119–130

    Article  CAS  PubMed  Google Scholar 

  6. Bamford VA, Angove HC, Seward HE, Thomson AJ, Cole JA, Butt JN, Hemmings AM, Richardson DJ (2002) Biochemistry 41:2921–2931. doi:10.1021/Bi015765d

    Article  CAS  PubMed  Google Scholar 

  7. Cunha CA, Macieira S, Dias JM, Almeida G, Goncalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romao MJ (2003) J Biol Chem 278:17455–17465. doi:10.1074/jbc.M211777200

    Article  CAS  PubMed  Google Scholar 

  8. Rodrigues M, Oliveira T, Pereira I, Archer M (2006) EMBO J 25:5951–5960

    Article  CAS  PubMed  Google Scholar 

  9. Rodrigues ML, Oliveira T, Matias PM, Martins C, Valente FM, Pereira IA, Archer M (2006) Acta Crystallogr F 62:565–568

    Article  CAS  Google Scholar 

  10. Igarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N (1997) Nat Struct Biol 4:276–284

    Article  CAS  PubMed  Google Scholar 

  11. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124:11737–11745. doi:10.1021/Ja0206487

    Article  CAS  PubMed  Google Scholar 

  12. Kostera J, Youngblut MD, Slosarczyk JM, Pacheco AA (2008) J Biol Inorg Chem 13:1073–1083. doi:10.1007/s00775-008-0393-4

    Article  CAS  PubMed  Google Scholar 

  13. Kostera J, McGarry JM, Pacheco AA (2010) Biochemistry 49:8546–8553

    Article  CAS  PubMed  Google Scholar 

  14. Poock S, Leach E, Moir J, Cole J, Richardson D (2002) J Biol Chem 277:23664–23669

    Article  CAS  PubMed  Google Scholar 

  15. Lukat P, Rudolf M, Stach P, Messerschmidt A, Kroneck P, Simon J, Einsle O (2008) Biochemistry 47:2080–2086

    Article  CAS  PubMed  Google Scholar 

  16. Kurnikov IV, Ratner MA, Pacheco AA (2005) Biochemistry 44:1856–1863. doi:10.1021/Bi048060v

    Article  CAS  PubMed  Google Scholar 

  17. Bykov D, Neese F (2011) J Biol Inorg Chem 16:417–430

    Article  CAS  PubMed  Google Scholar 

  18. Ford PC, Lorkovic IM (2002) Chem Rev 102:993–1017. doi:10.1021/Cr0000271

    Article  CAS  PubMed  Google Scholar 

  19. Wolak M, van Eldik R (2002) Coord Chem Rev 230:263–282

    Article  CAS  Google Scholar 

  20. Ravelli RBG, McSweeney SM (2000) Structure 8:315–328

    Article  CAS  PubMed  Google Scholar 

  21. Pearson AR, Pahl R, Kovaleva EG, Davidson VL, Wilmot CM (2007) J Synchrotron Radiat 14:92–98

    Article  CAS  PubMed  Google Scholar 

  22. Beitlich T, Kuhnel K, Schulze-Briese C, Shoeman RL, Schlichting I (2007) J Synchrotron Radiat 14:11–23

    Article  CAS  PubMed  Google Scholar 

  23. Moffat K, Szebenyi D, Bilderback D (1984) Science 223:1423–1425

    Article  CAS  PubMed  Google Scholar 

  24. Srajer V, Teng T, Ursby T, Pradervand C, Ren Z, Adachi S, Schildkamp W, Bourgeois D, Wulff M, Moffat K (1996) Science 274:1726–1729

    Article  CAS  PubMed  Google Scholar 

  25. Ren Z, Bourgeois D, Helliwell JR, Moffat K, Srajer V, Stoddard BL (1999) J Synchrotron Radiat 6:891–917

    Article  CAS  Google Scholar 

  26. Schmidt M, Rajagopal S, Ren Z, Moffat K (2003) Biophys J 84:2112–2129

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt M, Pahl R, Srajer V, Anderson S, Ren Z, Ihee H, Rajagopal S, Moffat K (2004) Proc Natl Acad Sci USA 101:4799–4804

    Article  CAS  PubMed  Google Scholar 

  28. Rajagopal S, Schmidt M, Anderson S, Moffat K (2004) Acta Crystallogr D 60:860–871

    Article  PubMed  Google Scholar 

  29. Schmidt M, Pahl R, Ihee H, Srajer V (2005) In: Nienhaus GU (ed) Protein–ligand interactions: methods and applications. Humana Press, Totowa

    Google Scholar 

  30. Rajagopal S, Anderson S, Srajer V, Schmidt M, Pahl R, Moffat K (2005) Structure 13:55–63

    Article  CAS  PubMed  Google Scholar 

  31. Ihee H, Rajagopal S, Srajer V, Pahl R, Schmidt M, Schotte F, Anfinrud PA, Wulff M, Moffat K (2005) Proc Natl Acad Sci USA 102:7145–7150

    Article  CAS  PubMed  Google Scholar 

  32. Key J, Srajer V, Pahl R, Moffat K (2007) Biochemistry 46:4706–4715

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt M (2008) In: Zinth W, Braun M, Gilch P (eds) Ultrashort laser pulses in medicine and biology. Springer, Berlin

  34. Raicu V, Schmidt M, Stoneman M (2009) In: Jakovlev V (ed) Biochemical applications of nonlinear optical spectroscopy. CRC Press, FL pp 1–32

  35. Schmidt M, Šrajer V, Purwar N, Tripathi S (2012) J Synchrotron Radiat 19:264–273 doi:10.1107/S090904951105549X

    Google Scholar 

  36. Tripathi S, Srajer V, Purwar N, Henning RW, Schmidt M (2012) Biophys J 102:325–332

    Article  CAS  PubMed  Google Scholar 

  37. Tsapin AI, Nealson KH, Meyers T, Cusanovich MA, van Beuumen J, Crosby LD, Feinberg BA, Zhang C (1996) J Bacteriol 178:6386–6388

    CAS  PubMed  Google Scholar 

  38. Takayama Y, Akutsu H (2007) Protein Expr Purif 56:80–84

    Article  CAS  PubMed  Google Scholar 

  39. Ozawa K, Yasukawa F, Fujiwara Y, Akutsu H (2001) Biosci Biotechnol Biochem 65:185–189

    Article  CAS  PubMed  Google Scholar 

  40. Dawson RMC, Elliot DC, Jones KM (1969) Data for biochemical research, Oxford University Press, London

  41. Atkinson SJ, Mowat CG, Reid GA, Chapman SK (2007) FEBS Lett 581:3805–3808

    Article  CAS  PubMed  Google Scholar 

  42. Heineman WR, Norris BJ, Goelz JF (1975) Anal Chem 47:79–84

    Article  CAS  PubMed  Google Scholar 

  43. Pilkington MBG, Coles BA, Compton RG (1989) Anal Chem 61:1787–1789

    CAS  Google Scholar 

  44. Bodemer GJ (2008) PhD dissertation. University of Wisconsin-Milwaukee, Milwaukee

  45. Watanabe T, Honda K (1982) J Phys Chem 86:2617–2619

    Article  CAS  Google Scholar 

  46. Fourmond V, Hoke K, Heering HA, Baffert C, Leroux F, Bertrand P, Leger C (2009) Bioelectrochemistry 76:141–147

    Article  CAS  PubMed  Google Scholar 

  47. Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW (2011) Acta Crystallogr D 67:271–281. doi:10.1107/S0907444910048675

    Article  PubMed  Google Scholar 

  48. Collaborative Computational Project Number 4 (1994) Acta Crystallogr D 50:760–763

    Article  Google Scholar 

  49. Graber T, Anderson S, Brewer H, Chen YS, Cho HS, Dashdorj N, Henning RW, Kosheleva I, Macha G, Meron M, Pahl R, Ren Z, Ruan S, Schotte F, Rajer VS, Viccaro PJ, Westferro F, Anfinrud P, Moffat K (2011) J Synchrotron Radiat 18:658–670

    Article  CAS  PubMed  Google Scholar 

  50. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, 3rd edn. Cambridge University Press, New York, pp 65–75 and 773–839

  51. Henry ER, Hofrichter J (1992) In: Brand L, Johnson ML (eds) Methods in enzymology. Academic Press, San Diego, pp 129–192

    Google Scholar 

  52. Gates AJ, Kemp GL, To CY, Mann J, Marritt SJ, Mayes AG, Richardson DJ, Butt JN (2011) Phys Chem Chem Phys 13:7720–7731

    Article  CAS  PubMed  Google Scholar 

  53. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2002) J Appl Crystallogr 40:658–674

    Article  Google Scholar 

  54. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr D 66:486–501

    Article  CAS  PubMed  Google Scholar 

  55. Thony-Meyer L, Fischer F, Kunzler P, Ritz D, Hennecke H (1995) J Bacteriol 177:4321–4326

    CAS  PubMed  Google Scholar 

  56. Londer Y, Giuliani SE, Peppler T, Collart FR (2008) Protein Expr Purif 62:128–137

    Article  CAS  PubMed  Google Scholar 

  57. Londer YY, Pokkuluri PR, Tiede DM, Schiffer M (2002) Biochim Biophys Acta 1554:202–211

    Article  CAS  PubMed  Google Scholar 

  58. Londer YY, Pokkuluri PR, Erickson J, Orshonsky V, Schiffer M (2005) Protein Expr Purif 39:254–260

    Article  CAS  PubMed  Google Scholar 

  59. Londer YY, Pokkuluri PR, Orshonsky V, Orshonsky L, Schiffer M (2006) Protein Expr Purif 47:241–248

    Article  CAS  PubMed  Google Scholar 

  60. Eaves DJ, Grove J, Staudenmann W, James P, Poole RK, White SA, Griffiths L, Cole JA (1998) Mol Microbiol 28:205–216

    Article  CAS  PubMed  Google Scholar 

  61. Ozawa K, Tsapin AI, Nealson KH, Cusanovich MA, Akutsu H (2000) Appl Environ Microbiol 66:4168–4171

    Article  CAS  PubMed  Google Scholar 

  62. Shi L, Lin JT, Markillie LM, Squier TC, Hooker BS (2005) Biotechniques 38:297–299

    Article  CAS  PubMed  Google Scholar 

  63. Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) J Bacteriol 188:4705–4714

    Article  CAS  PubMed  Google Scholar 

  64. Marritt SJ, Kemp GL, Xiaoe L, Durrant JR, Cheesman MR, Butt JN (2008) J Am Chem Soc 130:8588–8589

    Article  CAS  PubMed  Google Scholar 

  65. Kiefersauer R, Than ME, Dobbek H, Gremer L, Melero M, Strobl S, Dias JM, Soulimane T, Huber R (2000) J Appl Crystallogr 33:1223–1230

    Article  CAS  Google Scholar 

  66. Southworth-Davies RJ, Medina MA, Carmichael I, Garman EF (2007) Structure 15:1531–1541

    Article  CAS  PubMed  Google Scholar 

  67. Rajendran C, Dworkowski FS, Wang M, Schulze-Briese C (2011) J Synchrotron Radiat 18:318–328

    Article  CAS  PubMed  Google Scholar 

  68. Walker FA (1999) Coord Chem Rev 186:471–534

    Article  Google Scholar 

  69. Clarke TA, Kemp GL, Van Wonderen JH, Doyle RAS, Cole JA, Tovell N, Cheesman MR, Butt JN, Richardson DJ, Hemmings AM (2008) Biochemistry 47:3789–3799

    Article  CAS  PubMed  Google Scholar 

  70. Stach P, Einsle O, Schumacher W, Kurun E, Kroneck PMH (2000) J Inorg Biochem 79:381–385

    Article  CAS  PubMed  Google Scholar 

  71. Holm L, Park J (2000) Bioinformatics 16:566–567

    Article  CAS  PubMed  Google Scholar 

  72. Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, Fredrickson JK, Tiedje JM, Zhou J (2009) ISME J 3:966–976

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.S. and A.A.P. are supported by grants NSF-0843459, NSF-1121770, and UWM RGI 101X157. M.S. is supported by NSF CAREER grant 0952643. E.T.J. is supported by an NIH-NIGMS National Research Service Award (NRSA) fellowship (1F31GM099416-01). B.S. and T.G. gratefully acknowledge support from University of Wisconsin-Milwaukee’s Office of Undergraduate Research. Use of the BioCARS Sector 14 was supported by grants from the National Center for Research Resources (5P41RR007707) and the National Institute of General Medical Sciences (8P41GM103543) from the National Institutes of Health. The time-resolved setup at Sector 14 was funded in part through a collaboration with Philip Anfinrud (NIH/NIDDK). Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. The authors gratefully acknowledge Nick Silvaggi, Chuck Wimpee, Graham Moran, and Daad Safarini of the University of Wisconsin-Milwauke for helpful discussions, Victor Trussell of Rufus King High School for help in stability studies of ccNiR, Nick Silvaggi for the use of his high-performance chromatography apparatus, and the Jianhua Fu research group (Medical College of Wisconsin) for the use of their automated crystallization machine in the preliminary crystallization screens.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sean J. Elliott, Marius Schmidt or A. Andrew Pacheco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youngblut, M., Judd, E.T., Srajer, V. et al. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. J Biol Inorg Chem 17, 647–662 (2012). https://doi.org/10.1007/s00775-012-0885-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0885-0

Keywords

Navigation