Skip to main content
Log in

Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: a DFT approach

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this density functional theory study, reaction mechanisms of a co-catalytic binuclear metal center (Zn1–Zn2) containing enzyme leucine aminopeptidase for two different metal bridging nucleophiles (H2O and –OH) have been investigated. In addition, the effects of the substrate (l-leucine-p-nitroanilide → l-leucyl-p-anisidine) and metal (Zn1 → Mg and Zn2 → Co, i.e., Mg1–Zn2 and Mg1–Co2 variants) substitutions on the energetics of the mechanism have been investigated. The general acid/base mechanism utilizing a bicarbonate ion followed by this enzyme is divided into two steps: (1) the formation of the gem-diolate intermediate, and (2) the cleavage of the peptide bond. With the computed barrier of 17.8 kcal/mol, the mechanism utilizing a hydroxyl nucleophile was found to be in excellent agreement with the experimentally measured barrier of 18.7 kcal/mol. The rate-limiting step for reaction with l-leucine-p-nitroanilide is the cleavage of the peptide bond with a barrier of 17.8 kcal/mol. However, for l-leucyl-p-anisidine all steps of the mechanism were found to occur with similar barriers (18.0–19.0 kcal/mol). For the metallovariants, cleavage of the peptide bond occurs in the rate-limiting step with barriers of 17.8, 18.0, and 24.2 kcal/mol for the Zn1–Zn2, Mg1–Zn2, and Mg1–Co2 enzymes, respectively. The nature of the metal ion was found to affect only the creation of the gem-diolate intermediate, and after that all three enzymes follow essentially the same energetics. The results reported in this study have elucidated specific roles of both metal centers, the nucleophile, indirect ligands, and substrates in the catalytic functioning of this important class of binuclear metallopeptidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holz RC, Bzymek KP, Swierczek SI (2003) Curr Opin Chem Biol 7:197–206

    Article  PubMed  CAS  Google Scholar 

  2. Dismukes GC (1996) Chem Rev 96:2909–2926

    Article  PubMed  CAS  Google Scholar 

  3. Lipscomb WN, Sträter N (1996) Chem Rev 96:2375–2434

    Article  PubMed  CAS  Google Scholar 

  4. Wilcox DE (1996) Chem Rev 96:2435–2458

    Article  PubMed  CAS  Google Scholar 

  5. Heyduk T, Baichoo N, Heyduk E (2001) Met Ions Biol Syst 38:255–287

    PubMed  CAS  Google Scholar 

  6. Thomas JJ, Bakhtiar R, Siuzdak G (2000) Acc Chem Res 33:179–187

    Article  PubMed  CAS  Google Scholar 

  7. Thorner J, Emr SD, Abelson JN (2000) Methods Enzymol 2000:326

    Google Scholar 

  8. Suh J (1992) Acc Chem Res 25:273–278

    Article  CAS  Google Scholar 

  9. Lee TY, Suh J (2009) Chem Soc Rev 38:1949–1957

    Article  PubMed  CAS  Google Scholar 

  10. Suh J, Yoo SH, Kim MG, Jeong K, Ahn JY, Kim M-s, Chae PS, Lee TY, Lee J, Lee J, Jang YA, Ko EH (2007) Angew Chem Int Ed 46:7064–7067

    Article  CAS  Google Scholar 

  11. Meggers E (2009) Chem Commun 1001–1010

  12. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Microbiol Mol Biol Rev 62:597–635

    PubMed  CAS  Google Scholar 

  13. Galante YM, Formantici C (2003) Curr Org Chem 7:1399–1422

    Article  CAS  Google Scholar 

  14. Radzicka A, Wolfenden R (1996) J Am Chem Soc 118:6105–6109

    Article  CAS  Google Scholar 

  15. Sigel H, Martin RB (1982) Chem Rev 82:385–426

    Article  CAS  Google Scholar 

  16. Shen Y, Joachimiak A, Rosner MR, Tang WJ (2006) Nature 443:870–874

    Article  PubMed  CAS  Google Scholar 

  17. Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun C-Y, Meredith SC, Sisodia SS, Leissring MA, Tang W-J (2007) J Biol Chem 282:25453–25463

    Article  PubMed  CAS  Google Scholar 

  18. Weston J (2005) Chem Rev 105:2151–2174

    Article  PubMed  CAS  Google Scholar 

  19. Milović NM, Kostić NM (2003) J Am Chem Soc 125:781–788

    Article  PubMed  Google Scholar 

  20. Kumar CV, Thota J (2005) Inorg Chem 44:825–827

    Article  PubMed  CAS  Google Scholar 

  21. Rivas JCM, Salvagni E, Prabaharan R, de Rosales RTM, Parsons S (2004) Dalton Trans 172–177

  22. Rana TM, Meares CF (1990) J Am Chem Soc 112:2457–2458

    Article  CAS  Google Scholar 

  23. Murthy NN, Mahroof-Tahir M, Karlin KD (1993) J Am Chem Soc 115:10404–10405

    Article  CAS  Google Scholar 

  24. Suh J (1996) Perspect Bioinorg Chem 3:115–149

    CAS  Google Scholar 

  25. Milović NM, Dutcǎ L-M, Kostić NM (2003) Chem Eur J 9:5097–5106

    Article  PubMed  Google Scholar 

  26. Zhu L, Kostić NM (1993) J Am Chem Soc 115:4566–4570

    Article  CAS  Google Scholar 

  27. Yang G, Miao R, Li Y, Hong J, Zhao C, Guo Z, Zhu L (2005) Dalton Trans 1613–1619

  28. Sutton PA, Buckingham DA (1987) Acc Chem Res 20:357–364

    Article  CAS  Google Scholar 

  29. Rana TM, Meares CF (1991) Proc Natl Acad Sci USA 88:10578–10582

    Article  PubMed  CAS  Google Scholar 

  30. Hohage O, Sheldrick WS (2006) J Inorg Biochem 100:1506–1513

    Article  PubMed  CAS  Google Scholar 

  31. Hohage O, Manka S, Sheldrick WS (2009) Inorg Chim Acta 362:953–966

    Article  CAS  Google Scholar 

  32. Vicente J, Arcas A (2005) Coord Chem Rev 249:1135–1154

    Article  CAS  Google Scholar 

  33. Kassai M, Grant KB (2008) Inorg Chem Commun 11:521–525

    Article  CAS  Google Scholar 

  34. Suh J (2003) Acc Chem Res 36:562–570

    Article  PubMed  CAS  Google Scholar 

  35. Tubbs KJ, Fuller AL, Bennett B, Arif AM, Berreau LM (2003) Inorg Chem 42:4790–4791

    Article  PubMed  CAS  Google Scholar 

  36. Szajna-Fuller E, Ingle GK, Watkins RW, Arif AM, Berreau LM (2007) Inorg Chem 46:2353–2355

    Article  PubMed  CAS  Google Scholar 

  37. Parkin G (2004) Chem Rev 104:699–768

    Article  PubMed  CAS  Google Scholar 

  38. Chin J (1991) Acc Chem Res 24:145–152

    Article  CAS  Google Scholar 

  39. Hegg EL, Burstyn JN (1998) Coord Chem Rev 173:133–165

    Article  CAS  Google Scholar 

  40. Sträter N, Sherratt DJ, Colloms SD (1999) EMBO J 18:4513–4522

    Article  PubMed  Google Scholar 

  41. Taylor A (1993) FASEB J 7:290–298

    PubMed  CAS  Google Scholar 

  42. York IA, Goldberg AL, Mo XY, Rock KL (1999) Immunol Rev 172:49–66

    Article  PubMed  CAS  Google Scholar 

  43. Walling LL (2006) Curr Opin Plant Biol 9:227–233

    Article  PubMed  CAS  Google Scholar 

  44. Matsui M, Fowler JH, Walling LL (2006) Biol Chem 387:1535–1544

    Article  PubMed  CAS  Google Scholar 

  45. Lowther WT, Matthews BW (2002) Chem Rev 102:4581–4608

    Article  PubMed  CAS  Google Scholar 

  46. Buffone GJ, Spence JE, Fernbach SD, Curry MR, O’Brien WE, Beaudet AL (1988) Clin Chem 34:933–937

    PubMed  CAS  Google Scholar 

  47. Sträter N, Sun L, Kantrowitz ER, Lipscomb WN (1999) Proc Natl Acad Sci USA 96:11151–11155

    Article  PubMed  Google Scholar 

  48. Sträter N, Lipscomb WN (1995) Biochemistry 34:14792–14800

    Article  PubMed  Google Scholar 

  49. Burley SK, David PR, Sweet RM, Taylor A, Lipscomb WN (1992) J Mol Biol 224:113–140

    Article  PubMed  CAS  Google Scholar 

  50. Sträter N, Lipscomb WN (1995) Biochemistry 34:9200–9210

    Article  PubMed  Google Scholar 

  51. Kim H, Lipscomb WN (1993) Biochemistry 32:8465–8478

    Article  PubMed  CAS  Google Scholar 

  52. Burley SK, David PR, Taylor A, Lipscomb WN (1990) Proc Natl Acad Sci USA 87:6878–6882

    Article  PubMed  CAS  Google Scholar 

  53. Himmelhoch SR (1969) Arch Biochem Biophys 134:597–602

    Article  PubMed  CAS  Google Scholar 

  54. Carpenter FH, Vahl JM (1973) J Biol Chem 248:294–304

    PubMed  CAS  Google Scholar 

  55. Carpenter FH, Harrington KT (1972) J Biol Chem 247:5580–5586

    PubMed  CAS  Google Scholar 

  56. Melbye SW, Carpenter FH (1971) J Biol Chem 246:2459–2463

    PubMed  CAS  Google Scholar 

  57. Thompson GA, Carpenter FH (1976) J Biol Chem 251:1618–1624

    PubMed  CAS  Google Scholar 

  58. Allen MP, Yamada AH, Carpenter FH (1983) Biochemistry 22:3778–3783

    Article  PubMed  CAS  Google Scholar 

  59. Hasselgren C, Park H, Ming L-J (2001) J Biol Inorg Chem 6:120–127

    Article  PubMed  CAS  Google Scholar 

  60. Prince RH, Woolley PR (1972) Angew Chem Int Ed 11:408–417

    Article  CAS  Google Scholar 

  61. Groves JT, Olson JR (1985) Inorg Chem 24:2715–2717

    Article  CAS  Google Scholar 

  62. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  PubMed  CAS  Google Scholar 

  63. Huang C-C, Smith CV, Glickman MS, Jacobs WR, Sacchettini JC (2002) J Biol Chem 277:11559–11569

    Article  PubMed  CAS  Google Scholar 

  64. Courtois F, Ploux O (2005) Biochemistry 44:13583–13590

    Article  PubMed  CAS  Google Scholar 

  65. Antonov VK, Ginodman LM, Rumsh LD, Kapitannikov YV, Barshevskaya TN, Yavashev LP, Gurova AG, Volkova LI (1981) Eur J Biochem 117:195–200

    Article  PubMed  CAS  Google Scholar 

  66. Schürer G, Horn AHC, Gedeck P, Clark T (2002) J Phys Chem B 106:8815–8830

    Article  Google Scholar 

  67. Chen S-L, Marino T, Fang W-H, Russo N, Himo F (2008) J Phys Chem B 112:2494–2500

    Article  PubMed  CAS  Google Scholar 

  68. Leopoldini M, Russo N, Toscano M (2007) J Am Chem Soc 129:7776–7784

    Article  PubMed  CAS  Google Scholar 

  69. Alberto ME, Leopoldini M, Russo N (2011) Inorg Chem 50:3394–3403

    Article  PubMed  CAS  Google Scholar 

  70. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 version C.02. Gaussian, Wallingford

  71. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  72. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  PubMed  CAS  Google Scholar 

  73. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  74. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  75. Himo F, Siegbahn PEM (2003) Chem Rev 103:2421–2456

    Article  PubMed  CAS  Google Scholar 

  76. Siegbahn PEM (2003) Q Rev Biophys 36:91–145

    Article  PubMed  CAS  Google Scholar 

  77. Siegbahn PEM (2006) J Biol Inorg Chem 11:695–701

    Article  PubMed  CAS  Google Scholar 

  78. Noodleman L, Lovell T, Han W-G, Li J, Himo F (2004) Chem Rev 104:459–508

    Article  PubMed  CAS  Google Scholar 

  79. Bora RP, Barman A, Zhu X, Ozbil M, Prabhakar R (2010) J Phys Chem B 114:10860–10875

    Article  PubMed  CAS  Google Scholar 

  80. Singh R, Barman A, Prabhakar R (2009) J Phys Chem B 113:2990–2999

    Article  PubMed  CAS  Google Scholar 

  81. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118

    Article  PubMed  Google Scholar 

  82. Erhardt S, Weston J (2002) ChemBioChem 3:101–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A funding grant (DOH grant number 08KN-11) to R.P. from the James and Esther King Biomedical Research Program of the Florida State Health Department is acknowledged. Computational resources from the Center for Computational Science at the University of Miami are greatly appreciated. We thank Erica Sturm for her assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Prabhakar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material: Figs. S1–S5 and Tables S1–S39. Cartesian coordinates (Å) of all the optimized structures. This material is available free of charge via the Internet at http://pubs.acs.org.

Supplementary material 1 (PDF 1420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Barman, A., Ozbil, M. et al. Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: a DFT approach. J Biol Inorg Chem 17, 209–222 (2012). https://doi.org/10.1007/s00775-011-0843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0843-2

Keywords

Navigation