Skip to main content
Log in

Isoniazid and rifampicin inhibit allosterically heme binding to albumin and peroxynitrite isomerization by heme–albumin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Human serum heme–albumin (HSA-heme) displays globin-like properties. Here, the allosteric inhibition of ferric heme [heme-Fe(III)] binding to human serum albumin (HSA) and of ferric HSA–heme [HSA-heme-Fe(III)]-mediated peroxynitrite isomerization by isoniazid and rifampicin is reported. Moreover, the allosteric inhibition of isoniazid and rifampicin binding to HSA by heme-Fe(III) has been investigated. Data were obtained at pH 7.2 and 20.0 °C. The affinity of isoniazid and rifampicin for HSA [K 0 = (3.9 ± 0.4) × 10−4 and (1.3 ± 0.1) × 10−5 M, respectively] decreases by about 1 order of magnitude upon heme-Fe(III) binding to HSA [K h = (4.3 ± 0.4) × 10−3 and (1.2 ± 0.1) × 10−4 M, respectively]. As expected, the heme-Fe(III) affinity for HSA [H 0 = (1.9 ± 0.2) × 10−8 M] decreases by about 1 order of magnitude in the presence of saturating amounts of isoniazid and rifampicin [H d = (2.1 ± 0.2) × 10−7 M]. In the absence and presence of CO2, the values of the second-order rate constant (l on) for peroxynitrite isomerization by HSA-heme-Fe(III) are 4.1 × 105 and 4.3 × 105 M−1 s−1, respectively. Moreover, isoniazid and rifampicin inhibit dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) in the absence and presence of CO2. Accordingly, isoniazid and rifampicin impair in a dose-dependent fashion the HSA-heme-Fe(III)-based protection of free l-tyrosine against peroxynitrite-mediated nitration. This behavior has been ascribed to the pivotal role of Tyr150, a residue that either provides a polar environment in Sudlow’s site I (i.e., the binding pocket of isoniazid and rifampicin) or protrudes into the heme-Fe(III) cleft, depending on ligand binding to Sudlow’s site I or to the FA1 pocket, respectively. These results highlight the role of drugs in modulating heme-Fe(III) binding to HSA and HSA-heme-Fe(III) reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The recommended IUPAC nomenclature for peroxynitrite is oxoperoxonitrate(1-) and for peroxynitrous acid is hydrogen oxoperoxonitrate. The term “peroxynitrite” is used in the text to refer generically to both ONOO and its conjugate acid ONOOH (see [33, 53, 59, 77]).

Abbreviations

FA:

Fatty acid

Heme–Fe(III):

Ferric heme

HSA:

Human serum albumin

HSA-heme:

Human serum heme–albumin

HSA-heme-Fe(II)-NO:

Ferrous nitrosylated human serum heme–albumin

HSA-heme-Fe(III):

Ferric human serum heme–albumin

References

  1. Sudlow G, Birkett DJ, Wade DN (1975) Mol Pharmacol 11:824–832

    CAS  PubMed  Google Scholar 

  2. Peters T Jr (ed) (1996) All about albumin: biochemistry, genetics and medical applications. Academic Press, San Diego

    Google Scholar 

  3. Curry S (2002) Vox Sang 83(Suppl 1):315–319

    CAS  PubMed  Google Scholar 

  4. Kragh-Hansen U, Chuang VT, Otagiri M (2002) Biol Pharm Bull 25:695–704

    Article  CAS  PubMed  Google Scholar 

  5. Sakurai Y, Ma SF, Watanabe H, Yamaotsu N, Hirono S, Kurono Y, Kragh-Hansen U, Otagiri M (2004) Pharm Res 21:285–292

    Article  CAS  PubMed  Google Scholar 

  6. Sułkowska A, Bojko B, Równicka J, Sułkowski W (2004) Biopolymers 74:256–262

    Article  PubMed  Google Scholar 

  7. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) J Mol Biol 353:38–52

    Article  CAS  PubMed  Google Scholar 

  8. Ascenzi P, Bocedi A, Notari S, Fanali G, Fesce R, Fasano M (2006) Mini Rev Med Chem 6:483–489

    Article  CAS  PubMed  Google Scholar 

  9. Ascenzi P, Fasano M (2010) Biophys Chem 148:16–22

    Article  CAS  PubMed  Google Scholar 

  10. Curry S, Mandelkov H, Brick P, Franks N (1998) Nat Struct Biol 5:827–835

    Article  CAS  PubMed  Google Scholar 

  11. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439–446

    Article  CAS  PubMed  Google Scholar 

  12. Yamasaki K, Maruyama T, Yoshimoto K, Tsutsumi Y, Narazaki R, Fukuhara A, Kragh-Hansen U, Otagiri M (1999) Biochim Biophys Acta 1432:313–323

    Article  CAS  PubMed  Google Scholar 

  13. Bhattacharya AA, Curry S, Franks NP (2000) J Biol Chem 275:38731–38738

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharya AA, Grüne T, Curry S (2000) J Mol Biol 303:721–732

    Article  CAS  PubMed  Google Scholar 

  15. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) J Biol Chem 276:22804–22809

    Article  CAS  PubMed  Google Scholar 

  16. Chuang VTG, Otagiri M (2002) Pharm Res 19:1458–1464

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton JA (2004) Prog Lipid Res 43:177–199

    Article  CAS  PubMed  Google Scholar 

  18. Lejon S, Frick IM, Björck L, Wikström M, Svensson S (2004) J Biol Chem 279:42924–42928

    Article  CAS  PubMed  Google Scholar 

  19. Curry S (2009) Drug Metab Pharmacokinet 24:342–357

    Article  CAS  PubMed  Google Scholar 

  20. Miller YI, Shaklai N (1999) Biochim Biophys Acta 1454:153–164

    CAS  PubMed  Google Scholar 

  21. Ascenzi P, Bocedi A, Notari S, Menegatti E, Fasano M (2005) Biochem Biophys Res Commun 334:481–486

    Article  CAS  PubMed  Google Scholar 

  22. Bocedi A, Notari S, Menegatti E, Fanali G, Fasano M, Ascenzi P (2005) FEBS J 272:6287–6296

    Article  CAS  PubMed  Google Scholar 

  23. Fasano M, Fanali G, Leboffe L, Ascenzi P (2007) IUBMB Life 59:436–440

    Article  CAS  PubMed  Google Scholar 

  24. Fasano M, Baroni S, Vannini A, Ascenzi P, Aime S (2001) J Biol Inorg Chem 6:650–658

    Article  CAS  PubMed  Google Scholar 

  25. Wardell M, Wang Z, Ho JX, Robert J, Rüker F, Ruble J, Carter DC (2002) Biochem Biophys Res Commun 291:813–819

    Article  CAS  PubMed  Google Scholar 

  26. Nicoletti FP, Howes BD, Fittipaldi M, Fanali G, Fasano M, Ascenzi P, Smulevich G (2008) J Am Chem Soc 130:11677–11688

    Article  CAS  PubMed  Google Scholar 

  27. Komatsu T, Matsukawa Y, Tsuchida E (2000) Bioconjug Chem 11:772–776

    Article  CAS  PubMed  Google Scholar 

  28. Monzani E, Bonafé B, Fallarini A, Redaelli C, Casella L, Minchiotti L, Galliano M (2001) Biochim Biophys Acta 1547:302–312

    Article  CAS  PubMed  Google Scholar 

  29. Kamal JK, Behere DV (2002) J Biol Inorg Chem 7:273–283

    Article  CAS  PubMed  Google Scholar 

  30. Komatsu T, Ohmichi N, Nakagawa A, Zunszain PA, Curry S, Tsuchida E (2005) J Am Chem Soc 127:15933–15942

    Article  CAS  PubMed  Google Scholar 

  31. Ascenzi P, Imperi F, Coletta M, Fasano M (2008) Biochem Biophys Res Commun 369:686–691

    Article  CAS  PubMed  Google Scholar 

  32. Fasano M, Fanali G, Fesce R, Ascenzi P (2008) In: Bolognesi M, di Prisco G, Verde C (eds) Dioxygen binding and sensing proteins. Springer, Heidelberg, pp 121–131

    Chapter  Google Scholar 

  33. Ascenzi P, di Masi A, Coletta M, Ciaccio C, Fanali G, Nicoletti FP, Smulevich G, Fasano M (2009) J Biol Chem 284:31006–31017

    Article  CAS  PubMed  Google Scholar 

  34. Baroni S, Mattu M, Vannini A, Cipollone R, Aime S, Ascenzi P, Fasano M (2001) Eur J Biochem 268:6214–6220

    Article  CAS  PubMed  Google Scholar 

  35. Mattu M, Vannini A, Coletta M, Fasano M, Ascenzi P (2001) J Inorg Biochem 84:293–296

    Article  CAS  PubMed  Google Scholar 

  36. Fasano M, Mattu M, Coletta M, Ascenzi P (2002) J Inorg Biochem 91:487–490

    Article  CAS  PubMed  Google Scholar 

  37. Monzani E, Curto M, Galliano M, Minchiotti L, Aime S, Baroni S, Fasano M, Amoresano A, Salzano AM, Pucci P, Casella L (2002) Biophys J 83:2248–2258

    Article  CAS  PubMed  Google Scholar 

  38. Fanali G, Fesce R, Agrati C, Ascenzi P, Fasano M (2005) FEBS J 272:4672–4683

    Article  CAS  PubMed  Google Scholar 

  39. Fanali G, Bocedi A, Ascenzi P, Fasano M (2007) FEBS J 274:4491–4502

    Article  CAS  PubMed  Google Scholar 

  40. Fanali G, De Sanctis G, Gioia M, Coletta M, Ascenzi P, Fasano M (2009) J Biol Inorg Chem 14:209–217

    Article  CAS  PubMed  Google Scholar 

  41. Fanali G, Pariani G, Ascenzi P, Fasano M (2009) FEBS J 276:2241–2250

    Article  CAS  PubMed  Google Scholar 

  42. Kragh-Hansen U, Watanabe H, Nakajou K, Iwao Y, Otagiri M (2006) J Mol Biol 363:702–712

    Article  CAS  PubMed  Google Scholar 

  43. Simard JR, Zunszain PA, Hamilton JA, Curry S (2006) J Mol Biol 361:336–351

    Article  CAS  PubMed  Google Scholar 

  44. du Toit LC, Pillay V, Danckwerts MP (2006) Respir Res 7:118

    Article  PubMed  Google Scholar 

  45. Wyman J Jr (1964) Adv Protein Chem 19:223–286

    Article  CAS  PubMed  Google Scholar 

  46. Kharitonov VG, Sharma VS, Magde D, Koesling D (1997) Biochemistry 36:6814–6818

    Article  CAS  PubMed  Google Scholar 

  47. Boffi A, Das TK, Della Longa S, Spagnolo C, Rousseau DL (1999) Biophys J 77:1143–1149

    Article  CAS  PubMed  Google Scholar 

  48. Ascenzi P, Fasano M (2007) Biochem Biophys Res Commun 353:469–474

    Article  CAS  PubMed  Google Scholar 

  49. Notari S, Mancone C, Sergi M, Gullotta F, Bevilacqua N, Tempestilli M, Urso R, Lauria FN, Pucillo LP, Tripodi M, Ascenzi P (2010) IUBMB Life 62:387–393

    CAS  PubMed  Google Scholar 

  50. Bohle DS, Glassbrenner PA, Hansert B (1996) Methods Enzymol 269:302–311

    Article  CAS  PubMed  Google Scholar 

  51. Koppenol WH, Kissner R, Beckman JS (1996) Methods Enzymol 269:296–302

    Article  CAS  PubMed  Google Scholar 

  52. Herold S, Exner M, Boccini F (2003) Chem Res Toxicol 16:390–402

    Article  CAS  PubMed  Google Scholar 

  53. Herold S, Kalinga S, Matsui T, Watanabe Y (2004) J Am Chem Soc 126:6945–6955

    Article  CAS  PubMed  Google Scholar 

  54. Ascenzi P, Visca P (2008) Methods Enzymol 436:317–337

    Article  CAS  PubMed  Google Scholar 

  55. Goldstein S, Merényi G (2008) Methods Enzymol 436:49–61

    Article  CAS  PubMed  Google Scholar 

  56. Goldstein S, Lind J, Merényi G (2005) Chem Rev 105:2457–2470

    Article  CAS  PubMed  Google Scholar 

  57. Bocedi A, Notari S, Narciso P, Bolli A, Fasano M, Ascenzi P (2004) IUBMB Life 56:609–614

    Article  CAS  PubMed  Google Scholar 

  58. Yang JD, Deng SX, Liu ZF, Kong L, Liu SP (2007) Luminescence 22:559–566

    Article  PubMed  Google Scholar 

  59. Herold S, Kalinga S (2003) Biochemistry 42:14036–14046

    Article  CAS  PubMed  Google Scholar 

  60. Herold S, Matsui T, Watanabe Y (2001) J Am Chem Soc 123:4085–4086

    Article  CAS  PubMed  Google Scholar 

  61. Miranda KM, Espey MG, Wink DA (2001) Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  62. Ascenzi P, Bocedi A, Bolognesi M, Fabozzi G, Milani M, Visca P (2006) Biochem Biophys Res Commun 339:450–456

    Article  CAS  PubMed  Google Scholar 

  63. Goodsell DS, Olson AJ (1990) Proteins 8:195–202

    Article  CAS  PubMed  Google Scholar 

  64. Goodsell DS, Morris GM, Olson AJ (1998) J Mol Recogn 9:1–5

    Article  Google Scholar 

  65. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  66. Metcalfe C, Macdonald IK, Murphy EJ, Brown KA, Raven EL, Moody PC (2008) J Biol Chem 283:6193–6200

    Article  CAS  PubMed  Google Scholar 

  67. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Cell 104:901–912

    Article  CAS  PubMed  Google Scholar 

  68. Maes V, Engelborghs Y, Hoebeke J, Maras Y, Vercruysse A (1982) Mol Pharmacol 21:100–107

    CAS  PubMed  Google Scholar 

  69. Fanali G, Rampoldi V, di Masi A, Bolli A, Lopiano L, Ascenzi P, Fasano M (2010) IUBMB Life 62:371–376

    CAS  PubMed  Google Scholar 

  70. Herold S, Fago A (2005) Comp Biochem Physiol A Mol Integr Physiol 142:124–129

    Article  PubMed  Google Scholar 

  71. Ascenzi P, di Masi A, Sciorati C, Clementi E (2010) Biofactors 36:264–273

    Google Scholar 

  72. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) IUBMB Life 57:787–796

    Article  CAS  PubMed  Google Scholar 

  73. Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M (1968) Blood 32:811–815

    CAS  PubMed  Google Scholar 

  74. Houin G, Beucler A, Richelet S, Brioude R, Lafaix C, Tillement JP (1983) Ther Drug Monit 5:67–72

    Article  CAS  PubMed  Google Scholar 

  75. Delahunty T, Lee B, Conte JE (1998) J Chromatogr B Biomed Sci Appl 705:323–329

    Article  CAS  PubMed  Google Scholar 

  76. Alvarez B, Radi R (2003) Amino Acids 25:295–311

    Article  CAS  PubMed  Google Scholar 

  77. Pfeiffer S, Gorren AC, Schmidt K, Werner ER, Hansert B, Bohle DS, Mayer B (1997) J Biol Chem 272:3465–3470

    Article  CAS  PubMed  Google Scholar 

  78. Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) BMC Struct Biol 3:6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the Ministero dell’Istruzione, dell’Università e della Ricerca of Italy (PRIN 2007ECX29E_002 and University Roma Tre, CLAR 2009, to P.A.) and from the Ministero della Salute of Italy (Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Ricerca corrente 2009 to P.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ascenzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascenzi, P., Bolli, A., di Masi, A. et al. Isoniazid and rifampicin inhibit allosterically heme binding to albumin and peroxynitrite isomerization by heme–albumin. J Biol Inorg Chem 16, 97–108 (2011). https://doi.org/10.1007/s00775-010-0706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0706-2

Keywords

Navigation