Skip to main content
Log in

N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor-1

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Neuronal calcium sensor-1 (NCS-1) interacts with many membranes and cytosolic proteins, both in a Ca2+-dependent and in a Ca2+-independent manner, and its physiological role is governed by its N-terminal myristoylation. To understand the role of myristoylation in altering Ca2+ response and other basic biophysical properties, we have characterized the Ca2+ filling pathways in both myristoylated (myr) and non-myristoylated (non-myr) forms of NCS-1. We have observed that Ca2+ binds simultaneously to all three active EF-hands in non-myr NCS-1, whereas in the case of myr NCS-1, the process is sequential, where the second EF-hand is filled first, followed by the third and fourth EF-hands. In the case of myr NCS-1, the observed sequential Ca2+ binding process becomes more prominent in the presence of Mg2+. Besides, the analysis of 15N-relaxation data reveals that non-myr NCS-1 is more dynamic than myr NCS-1. The overall molecular tumbling correlation time increases by approximately 20% upon myristoylation. Comparing the apo forms of non-myr NCS-1 and myr NCS-1, we found the possibility of existence of some substates, which are structurally closer to the holo form of the protein. There are more such substates in the case of non-myr NCS-1 than in the case of the myr NCS-1, suggesting that the former accesses larger volumes of conformational substates compared with the latter. Further, the study reveals that the possibility of Ca2+ binding simultaneously to different parts of the protein is more favourable in non-myr NCS-1 than in myr NCS-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BMRB:

BioMagResBank

CaM:

Calmodulin

CaBP:

Ca2+-binding protein

CPMG:

Carr–Purcell–Meiboom–Gill

EF2:

Second EF-hand of neuronal calcium sensor-1

EF3:

Third EF-hand of neuronal calcium sensor-1

EF4:

Fourth EF-hand of neuronal calcium sensor-1

HSQC:

Heteronuclear single quantum correlation

ITC:

Isothermal titration calorimetry

MWC:

Monod–Wyman–Changeux

myr:

Myristoylated

NCS:

Neuronal calcium sensor

NOE:

Nuclear Overhauser effect

non-myr:

Non-myristoylated

VILIP:

Visinin-like protein

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  3. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    Article  CAS  PubMed  Google Scholar 

  4. Pettit DL, Perlman S, Malinow R (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266:1881–1885

    Article  CAS  PubMed  Google Scholar 

  5. Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–866

    Article  CAS  PubMed  Google Scholar 

  6. Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA, Waxham MN (1989) An essential role for postsynaptic calmodulin and protein-kinase activity in long-term potentiation. Nature 340:554–557

    Article  CAS  PubMed  Google Scholar 

  7. Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162

    Article  CAS  PubMed  Google Scholar 

  8. Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L (1999) Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci USA 96:2435–2438

    Article  CAS  PubMed  Google Scholar 

  9. Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T, Catterall WA (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159

    Article  CAS  PubMed  Google Scholar 

  10. Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou JM, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance K–Ca channel, IKCa1. J Biol Chem 274:5746–5754

    Article  CAS  PubMed  Google Scholar 

  11. Keen JE, Khawaled R, Farrens DL, Neelands T, Rivard A, Bond CT, Janowsky A, Fakler B, Adelman JP, Maylie J (1999) Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+ activated potassium channels. J Neurosci 19:8830–8838

    CAS  PubMed  Google Scholar 

  12. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanisms of calcium gating in small conductance calcium activated potassium channels. Nature 395:503–507

    Article  CAS  PubMed  Google Scholar 

  13. Dizhoor AM, Ericsson LH, Johnson RS, Kumar S, Olshevskaya E, Zozula S, Neubert TA, Stryer L, Hurley JB, Walsh KA (1992) The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids. J Biol Chem 267:16033–16036

    CAS  PubMed  Google Scholar 

  14. Zozulya S, Stryer L (1992) Calcium myristoyl protein switch. Proc Natl Acad Sci USA 89:11569–11573

    Article  CAS  PubMed  Google Scholar 

  15. Spilker C, Gundelfinger ED, Braunewell KH (1997) Calcium- and myristoyl-dependent subcellular localization of the neuronal calcium-binding protein VILIP in transfected PC12 cells. Neurosci Lett 225:126–128

    Article  CAS  PubMed  Google Scholar 

  16. Braunewell KH, Spilker C, Behnisch T, Gundelfinger ED (1997) The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: amino-terminal myristoylation determines functional activity. J Neurochem 68:2129–2139

    Article  CAS  PubMed  Google Scholar 

  17. Spilker C, Richter K, Smalla KH, Manahan-Vaughan D, Gundelfinger ED, Braunewell KH (2000) The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association. Neuroscience 96:121–129

    Article  CAS  PubMed  Google Scholar 

  18. Faurobert E, Chen CK, Hurley JB, Teng DHF (1996) Drosophila neurocalcin, a fatty acylated, Ca2+-binding protein that associates with membranes and inhibits in vitro phosphorylation of bovine rhodopsin. J Biol Chem 271:10256–10262

    Article  CAS  PubMed  Google Scholar 

  19. Ladant D (1995) Calcium and membrane-binding properties of bovine neurocalcin-delta expressed in Escherichia coli. J Biol Chem 270:3179–3185

    CAS  PubMed  Google Scholar 

  20. Kobayashi M, Takamatsu K, Saitoh S, Noguchi T (1993) Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. J Biol Chem 268:18898–18904

    CAS  PubMed  Google Scholar 

  21. McFerran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273:22768–22772

    Article  CAS  PubMed  Google Scholar 

  22. Dizhoor AM, Hurley JB (1996) Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced “activator-to-inhibitor” transition. J Biol Chem 271:19346–19350

    Article  CAS  PubMed  Google Scholar 

  23. Oleshevskaya EV, Hughes EE, Hurley JB, Dizhoor AM (1997) Calcium binding, but not calcium–myristoyl switch, controls the ability of guanyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanyl cyclase. J. Biol Chem 272:14327–14333

    Article  Google Scholar 

  24. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium–myristoyl switches. Nature 389:198–202

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M (1995) Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376:444–447

    Article  CAS  PubMed  Google Scholar 

  26. O’Callaghan DW, Tepikin AV, Burgoyne RD (2003) Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells. J Cell Biol 163:715–721

    Article  PubMed  Google Scholar 

  27. O’Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD (2002) Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem 277:14227–14237

    Article  PubMed  Google Scholar 

  28. Ivings L, Pennington SR, Jenkins R, Weiss JL, Burgoyne RD (2002) Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin delta: interaction with actin, clathrin and tubulin. Biochem J 363:599–608

    Article  CAS  PubMed  Google Scholar 

  29. Spilker C, Dresbach T, Braunewell KH (2002) Reversible translocation and activity-dependent localization of the calcium–myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. J Neurosci 22:7331–7339

    CAS  PubMed  Google Scholar 

  30. Spilker C, Braunewell KH (2003) Calcium–myristoyl switch, subcellular localization, and calciumdependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Mol Cell Neurosci 24:766–778

    Article  CAS  PubMed  Google Scholar 

  31. Jeromin A, Muralidhar D, Parameswaran MN, Roder J, Fairwell T, Scarlata S, Dowal L, Mustafi SM, Chary KVR, Sharma Y (2004) N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor. J Biol Chem 279:27158–27167

    Article  CAS  PubMed  Google Scholar 

  32. Aravind P, Chandra K, Reddy PP, Jeromin A, Chary KVR, Sharma Y (2008) Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg2+ modulates Ca2+ binding, Ca2+-induced conformational changes, and equilibrium unfolding transitions. J Mol Biol 376:1100–1115

    Article  CAS  PubMed  Google Scholar 

  33. Mukherjee S, Muralidhar D, Atreya HS, Szyperski T, Jeromin A, Sharma Y, Chary KVR (2006) 1H, 13C, and 15N chemical shift assignments of neuronal calcium sensor-1, a multi-functional calcium-binding protein. J Biomol NMR 36:48

    Article  PubMed  Google Scholar 

  34. Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J Magn Reson B 101:201–205

    Article  CAS  Google Scholar 

  35. Grzesiek S, Bax A (1992) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293

    Article  CAS  Google Scholar 

  36. Kay LE, Ikura M, Tschudin R, Bax A (1990) 3-Dimensional triple-resonance NMR-spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  37. Clubb RT, Thanabal V, Wagner G (1992) A new 3D HN(CA)HA experiment for obtaining fingerprint HN–Hα cross peaks in N15-labeled and C13-labeled proteins. J Biomol NMR 2:203–210

    Article  CAS  PubMed  Google Scholar 

  38. Clubb RT, Thanabal V, Wagner G (1992) A constant-time 3-dimensional triple-resonance pulse scheme to correlate intraresidue 1H(N), N15, and C′13 chemical-shifts in N15–C13-labeled proteins. J Magn Reson 97:213–217

    CAS  Google Scholar 

  39. Vuister GW, Bax A (1993) Quantitative J correlation—a new approach for measuring homonuclear 3-bond J(HN–Hα) coupling-constants in N15-enriched proteins. J Am Chem Soc 115:7772–7777

    Article  CAS  Google Scholar 

  40. Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. CANTINA

  41. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  CAS  PubMed  Google Scholar 

  42. Vold RL, Waugh JS, Klein MP, Phelps DE (1968) Measurement of spin relaxation in complex systems. J Chem Phys 48:483831–483832

    Article  Google Scholar 

  43. Cavanagh J, Palmer AG, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected 2-dimensional heteronuclear relay spectroscopy. J Magn Reson 91:429–436

    CAS  Google Scholar 

  44. Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected 2-dimensional heteronuclear correlation NMR-spectroscopy. J Magn Reson 93:151–170

    CAS  Google Scholar 

  45. Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR-spectra without phase cycling—application to the study of hydrogen-exchange in proteins. J Magn Reson 85:393–399

    CAS  Google Scholar 

  46. Lefevre JF, Dayie KT, Peng JW, Wagner G (1996) Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N–H spectral density functions. Biochemistry 35:2674–2686

    Article  CAS  PubMed  Google Scholar 

  47. Atreya HS, Chary KVR, Govil G (2002) Automated NMR assignments of proteins for high throughput structure determination: TATAPRO II. Curr Sci 83:1372–1376

    CAS  Google Scholar 

  48. Goddard TD, Kneller DG SPARKY 3. University of California, San Francisco, http://www.cgl.ucsf.edu/home/sparky/

  49. Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525

    Article  CAS  PubMed  Google Scholar 

  50. Malmendal A, Evenas J, Thulin E, Gippert GP, Drakenberg T, Forsen S (1998) When size is important accommodation of magnesium in a calcium binding regulatory domain. J Biol Chem 273:28994–29000

    Article  CAS  PubMed  Google Scholar 

  51. Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem 276:11949–11955

    Article  CAS  PubMed  Google Scholar 

  52. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  CAS  PubMed  Google Scholar 

  53. Babini E, Bertini I, Capozzi F, Luchinat C, Quattrone A, Turano M (2005) Principal component analysis of the conformational freedom within the EF-hand superfamily. J Proteome Res 6:1961–1971

    Article  Google Scholar 

  54. Capozzi F, Luchinat C, Micheletti C, Pontiggia F (2007) Essential dynamics of helices provide a functional classification of EF-hand proteins. J Proteome Res 11:4245–4255

    Article  Google Scholar 

  55. Capozzi F, Casadei F, Luchinat C (2006) EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. J Biol Inorg Chem 8:949–962

    Article  Google Scholar 

  56. Micheletti C, Carloni P, Maritan A (2004) Accurate and efficient description of protein vibrational dynamics: comparing molecular dynamics and Gaussian models. Proteins 55(3):635–645

    Article  CAS  PubMed  Google Scholar 

  57. Bahar I, Erman B, Haliloglu T, Jernigan RL (1997) Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations. Biochemistry 36(44):13512–13523

    Article  CAS  PubMed  Google Scholar 

  58. Piana S, Carloni P, Parrinello M (2002) Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. J Mol Biol 319(2):567–583

    Article  CAS  PubMed  Google Scholar 

  59. Cascella M, Micheletti C, Rothlisberger U, Carloni P (2005) Evolutionarily conserved functional mechanics across pepsin-like, retroviral aspartic proteases. J Am Chem Soc 127(11):3734–3742

    Article  CAS  PubMed  Google Scholar 

  60. De Los Rios P, Cecconi F, Pretre A, Dietler G, Michielin O, Piazza F, Juanico B (2005) Functional dynamics of PDZ binding domains: a normal-mode analysis. J Biophys 89(1):14–21

    Article  CAS  Google Scholar 

  61. Falke JJ (2002) Enzymology. A moving story. Science 295(5559):1480–1481

    Article  CAS  PubMed  Google Scholar 

  62. Rod TH, Radkiewicz JL, Brooks CL III (2003) Correlated motion, the effect of distal mutations in dihydrofolate reductase. Proc Natl Acad Sci USA 100(12):6980–6985

    Article  CAS  PubMed  Google Scholar 

  63. Delarue M, Sanejouand YH (2002) Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol 320(5):1011–1024

    Article  CAS  PubMed  Google Scholar 

  64. Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M (2005) Normal modes for predicting protein motions: a comprehensive database assessment and associated Web tool. Protein Sci 14(3):633–643

    Article  CAS  PubMed  Google Scholar 

  65. Smith GR, Sternberg MJ, Bates PA (2005) The relationship between the flexibility of proteins, their conformational states on forming protein–protein complexes with an application to protein–protein docking. J Mol Biol 347(5):1077–1101

    Article  CAS  PubMed  Google Scholar 

  66. Wilson MA, Brunger AT (2000) The 1.0 angstrom crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. J Mol Biol 301:1237–1256

    Article  CAS  PubMed  Google Scholar 

  67. Chou JJ, Li SP, Klee CB, Bax A (2001) Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–997

    Article  CAS  PubMed  Google Scholar 

  68. Zhang M, Tanaka T, Ikura M (1995) Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol 2:758–767

    Article  CAS  PubMed  Google Scholar 

  69. Tjandra N, Kuboniwa H, Ren H, Bax A (1995) Rotational-dynamics of calcium-free calmodulin studied by N15-NMR relaxation measurements. Eur J Biochem 230:1014–1024

    Article  CAS  PubMed  Google Scholar 

  70. Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  71. Schulman BA, Kim PS, Dobson CM, Redfield C (1997) A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol 4:630–634

    Article  CAS  PubMed  Google Scholar 

  72. Baum J, Dobson CM, Evans PA, Hanley C (1989) Characterization of a partly folded protein by NMR methods—studies on the molten globule state of guinea-pig alpha-lactalbumin. Biochemistry 28:7–13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The facilities provided by the National Facility for High Field NMR, supported by the Department of Science and Technology (DST), the Department of Biotechnology (DBT) and the Council of Scientific and Industrial Research (CSIR), and Tata Institute of Fundamental Research, Mumbai, India, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. R. Chary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, K., Ramakrishnan, V., Sharma, Y. et al. N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor-1. J Biol Inorg Chem 16, 81–95 (2011). https://doi.org/10.1007/s00775-010-0705-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0705-3

Keywords

Navigation