Skip to main content
Log in

The impact of urea-induced unfolding on the redox process of immobilised cytochrome c

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements, complemented by surface enhanced resonance Raman studies, indicate two distinct states of the adsorbed proteins that mainly differ with respect to the ligation pattern of the haem. The native state, in which the haem is axially coordinated by Met80 and His18, displays a reduction potential that slightly shifts to negative values with increasing urea concentration. At urea concentrations higher than 6 M, a second state prevails in which the Met80 ligand is replaced by an additional histidine residue. This structural change in the haem pocket is associated with an approximately 0.4 V shift of the reduction potential to negative values. These two states were found for both the wild-type protein and the mutant in which lysine residues 72, 73 and 79 had been substituted by alanines. The analysis of the reduction potentials, the reaction enthalpies and entropies as well as the rate constants indicates that these three lysine residues have an important effect on stabilising the protein structure in the adsorbed state and facilitating the electron transfer dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

6cLS:

Six-coordinated low spin

CV:

Cyclic voltammetry

MU:

11-Mercapto-1-undecanol

MUA:

11-Mercapto-1-undecanoic acid

SAM:

Self-assembled monolayer

SCE:

Saturated calomel electrode

SERR:

Surface-enhanced resonance Raman

ycc:

Recombinant non-trimethylated Saccharomyces cerevisiae iso-1-cytochrome c

References

  1. Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) (2001) Handbook of metalloproteins, vol 1. Wiley, Chichester

  2. Scott RA, Mauk GA (eds) (1996) Cytochrome c: a multidisciplinary approach. University Science Books, Sausalito

  3. Moore GR, Pettigrew GW (1990) Cytochromes c: evolutionary, structural, and physicochemical aspects. Springer, Berlin

    Google Scholar 

  4. Kagan VE, Bayr HA, Belikova NA, Kapralov O, Tyurina YY, Jang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, Shvedova AA, Borisenko G (2009) Free Radic Biol Med 46:1439–1453

    Article  CAS  PubMed  Google Scholar 

  5. Bond AM (1994) Inorg Chim Acta 226:293–340

    Article  CAS  Google Scholar 

  6. Hill HAO, Hunt NI (1993) Methods Enzymol 227:501–522

    Article  CAS  PubMed  Google Scholar 

  7. Armstrong FA (1990) Struct Bonding 72:137–222

    Article  CAS  Google Scholar 

  8. Armstrong FA, Hill HAO, Walton NJ (1986) Q Rev Biophys 18:261–322

    Article  Google Scholar 

  9. Murgida DH, Hildebrandt P (2008) Chem Soc Rev 37:937–945

    Article  CAS  PubMed  Google Scholar 

  10. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Proteins 21:167–195

    Article  CAS  PubMed  Google Scholar 

  11. Dobson CM, Sali A, Karplus M (1998) Angew Chem Int Ed 37:868–893

    Article  Google Scholar 

  12. Dobson CM, Karplus M (1999) Curr Opin Struct Biol 9:92–101

    Article  CAS  PubMed  Google Scholar 

  13. Yeh SR, Rousseau DL (1998) Nat Struct Biol 5:222–228

    Article  CAS  PubMed  Google Scholar 

  14. Xu Y, Mayne L, Englander SW (1998) Nat Struct Biol 5:774–778

    Article  CAS  PubMed  Google Scholar 

  15. Russell BS, Melenkivitz R, Bren KL (2000) Proc Natl Acad Sci USA 97:8312–8317

    Article  CAS  PubMed  Google Scholar 

  16. Myer YP, MacDonald LH, Verma BC, Pande A (1980) Biochemistry 19:199–207

    Article  CAS  PubMed  Google Scholar 

  17. Yeh SR, Han SW, Rousseau DL (1998) Acc Chem Res 31:727–736

    Article  CAS  Google Scholar 

  18. Zhou J, Zheng J, Jiang S (2004) J Phys Chem B 108:17418–17424

    Article  CAS  Google Scholar 

  19. Xu J, Bowden EF (2006) J Am Chem Soc 128:6813–6822

    Article  CAS  PubMed  Google Scholar 

  20. Battistuzzi G, Borsari M, De Rienzo F, Di Rocco G, Ranieri A, Sola M (2007) Biochemistry 46:1694–1702

    Article  CAS  PubMed  Google Scholar 

  21. Rosell FI, Ferrer JC, Mauk AG (1998) J Am Chem Soc 120:11234–11245

    Article  CAS  Google Scholar 

  22. Pollock WBR, Rosell FI, Twitchett MB, Dumont ME, Mauk AG (1998) Biochemistry 37:6124–6131

    Article  CAS  PubMed  Google Scholar 

  23. Cutler RJ, Pielak GJ, Mauk AG, Smith M (1987) Protein Eng 1:95–99

    Article  CAS  PubMed  Google Scholar 

  24. Liang N, Mauk AG, Pielak GJ, Johnson JA, Smith M, Hoffmann B (1988) Science 240:311–313

    Article  CAS  PubMed  Google Scholar 

  25. Battistuzzi G, Borsari M, Sola M, Francia F (1997) Biochemistry 36:16247–16258

    Article  CAS  PubMed  Google Scholar 

  26. Battistuzzi G, Borsari M, Bortolotti CA, Di Rocco G, Ranieri A, Sola M (2007) J Phys Chem B 111:10281–10287

    Article  CAS  PubMed  Google Scholar 

  27. Yee EL, Cave RJ, Guyer KL, Tyma PD, Weaver MJ (1979) J Am Chem Soc 101:1131–1137

    Article  CAS  Google Scholar 

  28. Yee EL, Weaver MJ (1980) Inorg Chem 19:1077–1079

    Article  CAS  Google Scholar 

  29. Song S, Clark RA, Bowden EF, Tarlov MJ (1993) J Phys Chem 97:6564–6572

    Article  CAS  Google Scholar 

  30. Weaver MJ (1979) J Phys Chem 13:1748–1757

    Article  Google Scholar 

  31. Bonifacio A, Millo D, Gooijer C, Boegschoten R, van der Zwan G (2004) Anal Chem 76:1529–1531

    Article  CAS  PubMed  Google Scholar 

  32. Feng JJ, Murgida DH, Utesch T, Mroginski MA, Hildebrandt P, Weidinger I (2008) J Phys Chem B 112:15202–15211

    Article  CAS  PubMed  Google Scholar 

  33. Millo D, Bonifacio A, Ranieri A, Borsari M, Gooijer C, van der Zwan G (2007) Langmuir 23:4340–4345

    Article  CAS  PubMed  Google Scholar 

  34. Millo D, Bonifacio A, Ranieri A, Borsari M, Gooijer C, van der Zwan G (2007) Langmuir 23:9898–9904

    Article  CAS  PubMed  Google Scholar 

  35. Battistuzzi G, Borsari M, Sola M (2001) Eur J Inorg Chem 2989–3004

  36. Fedurco M, Augustynski J, Indiani C, Smulevich G, Antalík M, Bánó M, Sedlák E, Galscock MC, Dawson JH (2005) J Am Chem Soc 127:7638–7646

    Article  CAS  PubMed  Google Scholar 

  37. Oellerich S, Wackerbarth H, Hildebrandt P (2002) J Phys Chem B 106:6566–6580

    Article  CAS  Google Scholar 

  38. Wackerbarth H, Hildebrandt P (2003) ChemPhysChem 4:714–724

    Article  CAS  PubMed  Google Scholar 

  39. Murgida DH, Hildebrandt P (2001) J Phys Chem B 105:1578–1586

    Article  CAS  Google Scholar 

  40. Hildebrandt P (1991) J Mol Struct 242:379–395

    Article  CAS  Google Scholar 

  41. Fedurco M, Augustynski J, Indiani C, Smulevich G, Antalík M, Bánó M, Sedlák E, Galscock MC, Dawson JH (2004) Biochim Biophys Acta 1703:31–41

    CAS  PubMed  Google Scholar 

  42. Bhuyan AK, Udgaonkar JB (2001) J Mol Biol 312:1135–1160

    Article  CAS  PubMed  Google Scholar 

  43. Pilard R, Haladjian J, Bianco P, Serre P-A, Brabec V (1983) Biophys Chem 17:131–137

    Article  CAS  PubMed  Google Scholar 

  44. Monari S, Ranieri A, Di Rocco G, van der Zwan G, Peressini S, Tavagnacco C, Millo D, Borsari M (2009) J Appl Electrochem 39:2181–2190

    Article  CAS  Google Scholar 

  45. Battistuzzi G, Borsari M, Di Rocco G, Ranieri A, Sola M (2004) J Biol Inorg Chem 9:23–26

    Article  CAS  PubMed  Google Scholar 

  46. Paggi DA, Martín DF, Kranich A, Hildebrandt P, Martí M, Murgida DH (2009) Electrochim Acta 54:4963–4970

    Article  CAS  Google Scholar 

  47. Battistuzzi G, Borsari M, Cowan JA, Ranieri A, Sola M (2002) J Am Chem Soc 124:5315–5324

    Article  CAS  PubMed  Google Scholar 

  48. Bortolotti CA, Battistuzzi G, Borsari M, Facci P, Ranieri A, Sola M (2006) J Am Chem Soc 128:5444–5451

    Article  CAS  PubMed  Google Scholar 

  49. Grealis C, Magner E (2003) Langmuir 19:1282–1286

    Article  CAS  Google Scholar 

  50. Battistuzzi G, Borsari M, Canters GW, De Waal E, Loschi L, Warmerdam G, Sola M (2001) Biochemistry 40:6707–6712

    Article  CAS  PubMed  Google Scholar 

  51. Bertrand P, Mbarki O, Asso M, Blanchard L, Guerlesquin F, Tegoni M (1995) Biochemistry 34:11071–11079

    Article  PubMed  Google Scholar 

  52. Gunner MR, Alexov E, Torres E, Lipovaca S (1997) J Biol Inorg Chem 2:126–134

    Article  CAS  Google Scholar 

  53. Mauk AG, Moore GR (1997) J Biol Inorg Chem 2:119–125

    Article  CAS  Google Scholar 

  54. Tezcan FA, Winkler JR, Gray HB (1998) J Am Chem Soc 120:13383–13388

    Article  CAS  Google Scholar 

  55. Warshel A, Papazyan A, Muegge I (1997) J Biol Inorg Chem 2:143–152

    Article  CAS  Google Scholar 

  56. Banci L, Bertini I, Rosato A, Varani G (1999) J Biol Inorg Chem 4:824–837

    Article  CAS  PubMed  Google Scholar 

  57. Battistuzzi G, Loschi L, Borsari M, Sola M (1999) J Biol Inorg Chem 4:601–607

    Article  CAS  PubMed  Google Scholar 

  58. Borsari M, Bellei M, Tavagnacco C, Peressini S, Millo D, Costa G (2003) Inorg Chim Acta 349:182–188

    Article  CAS  Google Scholar 

  59. Banci L, Bertini I, Gray HB, Luchinat C, Redding T, Rosato A, Turano P (1997) Biochemistry 36:9867–9877

    Article  CAS  PubMed  Google Scholar 

  60. Furlan S, La Penna G, Banci L, Mealli C (2007) J Phys Chem B 111:1157–1164

    Article  CAS  PubMed  Google Scholar 

  61. La Penna G, Furlan S, Banci L (2007) J Biol Inorg Chem 12:180–193

    Article  CAS  PubMed  Google Scholar 

  62. Mao J, Hauser K, Gunner MR (2003) Biochemistry 42:9829–9840

    Article  CAS  PubMed  Google Scholar 

  63. Liu L, Guo Q-X (2001) Chem Rev 101:673–695

    Article  CAS  PubMed  Google Scholar 

  64. Grünwald E, Steel C (1995) J Am Chem Soc 117:5687–5692

    Article  Google Scholar 

  65. Grünwald E (1986) J Am Chem Soc 108:5726–5731

    Article  Google Scholar 

  66. Searle MS, Weatwell MS, Williams DH (1995) J Chem Soc Perkin Trans 2 141–151

    Google Scholar 

  67. Rekharsky M, Inoue Y (2000) J Am Chem Soc 122:4418–4435

    Article  CAS  Google Scholar 

  68. Liu L, Yang C, Guo Q-X (2000) Biophys Chem 84:239–251

    Article  CAS  PubMed  Google Scholar 

  69. Strazewski P (2002) J Am Chem Soc 124:3546–3554

    Article  CAS  PubMed  Google Scholar 

  70. Blokzijl W, Engberts JBNF (1993) Angew Chem Int Ed Engl 32:1545–1579

    Article  Google Scholar 

  71. Lumry R, Rajender S (1970) Biopolymers 9:1125–1227

    Article  CAS  PubMed  Google Scholar 

  72. Krug RR, Hunter WG, Grieger RA (1976) J Phys Chem 80:2335–2351

    Article  CAS  Google Scholar 

  73. Ben-Naim A (1975) Biopolymers 14:1337–1355

    Article  CAS  Google Scholar 

  74. Lee B, Graziano G (1996) J Am Chem Soc 118:5163–5168

    Article  CAS  Google Scholar 

  75. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  76. Millo D, Ranieri A, Gross P, Ly HK, Borsari M, Hildebrandt P, Wuite GJL, Gooijer C, van der Zwan G (2009) J Phys Chem C 113:2861–2866

    Article  CAS  Google Scholar 

  77. Murgida DH, Hildebrandt P (2001) J Am Chem Soc 123:4062–4068

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Murat Sezer for supporting the SERR spectroscopy measurements in Berlin. This work was performed with financial support from MIUR (COFIN 2007, protocollo 20079Y9578_002, Bioelettrochimica: trasferimento di carica in sistemi di rilevanza biologica), the University of Modena and Reggio Emilia, the Deutsche Forschungsgemeinschaft (Sfb498), the Alexander von Humboldt Foundation (D.M.) and the European Community Access to Research Infrastructures Action of The Improving Human Potential (contract no. HPRI-CT-1999-00064) (A.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Hildebrandt or Marco Borsari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monari, S., Millo, D., Ranieri, A. et al. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c . J Biol Inorg Chem 15, 1233–1242 (2010). https://doi.org/10.1007/s00775-010-0681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0681-7

Keywords

Navigation